Missão Crítica – Introdução

Mudamos para http://infoachei.com.br/
Obrigado pela visita!
Introdução

Já imaginou o que aconteceria se o sistema de seu banco ficasse horas sem funcionar? Quais seriam as conseqüências se seu provedor de acesso à internet perdesse dados de seus clientes? Já pensou na situação caótica que a cidade de São Paulo viveria se os computadores do sistema metroviário simplesmente parassem? Para muitas empresas e setores de atividade, o uso de sistemas computacionais é imprescindível para a manutenção do negócio. Se tal sistema é vítima de uma falha que interrompa seu funcionamento ou que cause a perda de dados importantes, a empresa pode simplesmente falir. Para evitar esse tipo de transtornos, tais empresas “montam” seus sistemas como sendo de missão crítica, conceito esse explicado a seguir.

O que é missão crítica

Em poucas palavras, missão crítica é um ambiente tecnológico construído para evitar a paralisação de serviços computacionais e a perda de dados importantes a um negócio. Para isso, uma série de equipamentos e tecnologias é aplicada ao ambiente.

O que determina que tipo de equipamento e que tipo de tecnologia serão usados em uma ambiente de missão crítica é o nível de importância do negócio e da operação. Se esses aspectos não forem bem trabalhados, uma empresa pode investir mais do que precisa nessa área, ou, na pior das hipóteses, investir menos, o que pode significar que o pouco investimento feito de pouco valeu.

Para você entender melhor, imagine a seguinte situação: uma cadeia de lojas possui unidades nos principais shoppings do país. É possível que o sistema de uma das lojas deixe de funcionar por algum motivo. O problema é que essa paralisação afeta de imediato a empresa, porque os clientes estão no caixa esperando atendimento e, em breve, muitos outros farão o mesmo. Até que uma equipe de TI investigue o problema e efetue os reparos necessários, um tempo muito grande será gasto e os clientes irão para uma loja concorrente e certamente não voltarão mais, pois associarão à loja a imagem de um serviço de má qualidade. Para evitar esse tipo de situação, a loja pode tomar uma série de medidas. Uma delas é permitir que o sistema continue operando mesmo se perder a conexão com uma base central. Outra possibilidade é fazer com que o sistema da filial mais próxima continue as operações enquanto o sistema paralisado é verificado. Outra idéia é fazer uso de equipamentos redundantes.

Quando nos referimos ao funcionamento e à paralisação de um sistema, é importante considerarmos dois termos: uptime e downtime. O primeiro indica o tempo em que um sistema fica disponível. O segundo indica o tempo em que um sistema fica fora de uso.

Tolerância a falhas e alta disponibilidade

Como dito anteriormente, uma empresa precisa avaliar o nível de criticidade de suas operações para determinar o quanto investir num ambiente de missão crítica. No caso de uma operação de nível crítico muito alto, pode-se fazer uso de equipamentos e sistemas conhecidos como “tolerantes a falhas” ou, em inglês, “fault tolerance“. Com equipamentos desse tipo, sempre há outro que fica na retaguarda, ou seja, se o principal deixa de funcionar, um segundo imediatamente assume a operação.

Um outro conceito importante é o de “alta disponibilidade” ou “high availability“. Em equipamentos desse tipo, geralmente não há máquinas na retaguarda, no máximo, existe o espelhamento de HDs (como os sistemas RAID). No entanto, tais equipamentos são desenvolvidos para ter o menor risco de falhas possível.

Nos sistemas de alta disponibilidade, costuma-se usar como medição o valor de uptime correspondente a 99,9% ao ano. Isso significa que, como o ano possui 365 dias – 8760 horas -, o sistema precisa operar por pelo menos 8751 horas, já que essa taxa equivale a 99,9%. Em outras palavras, para um sistema de alta disponibilidade fazer jus ao seu nome, seu tempo de paralisação tem que ser de até 9 horas por ano. No entanto, esses valores podem variar de acordo com o sistema utilizado.

Se um sistema possui um nível de criticidade tão alto que praticamente não pode parar de funcionar, o ideal é fazer uso de sistemas tolerantes a falhas, já que o uptime destes corresponde a 99,999%, ou seja, esse sistema funciona, no mínimo, por 8759,91 horas (de 8760) por ano. Isso quer dizer que sistemas desse tipo praticamente não param.

É importante deixar claro que, quando se lida com alta disponibilidade e tolerância a falhas, a abordagem acima não considera o tempo de paralisações programadas, para os casos em que os servidores entram em manutenção, por exemplo.

Escalabilidade

Em ambientes de missão crítica é importante trabalhar para que os sistemas não parem de funcionar apenas por falhas e erros, mas também que não sejam paralisados por sobrecarga. Se, por exemplo, o site da Receita Federal estiver apto a receber mil declarações de Imposto de Renda por hora, é necessário observar se esse limite não está sendo atingido. Se isso estiver ocorrendo, deve-se aumentar a capacidade do sistema, do contrário, os servidores ficarão tão sobrecarregados que quase ninguém conseguirá fazer a declaração.

Por outro lado, é desperdício gastar com sistemas que dispõem de uma capacidade muito alta e que não será usada. Por exemplo, se o InfoWester gasta de tráfego mensal cerca de 25 GB, para quê utilizar servidores que suportam tráfego mensal de 1 TB?

Essas questões são respondidas com o conceito de “escalabilidade“. Trata-se da possibilidade de um sistema expandir sua capacidade conforme a necessidade.

Antes de tudo, a empresa precisa avaliar quais as possibilidades de aumento do uso de seus sistemas. A partir daí, deve-se criar condições para que a capacidade seja aumentada conforme a necessidade. Por exemplo, a empresa pode adquirir equipamentos que suportam 4 processadores. Só que ao invés de utilizar 4 desses chips, pode usar apenas 2 e acrescentar os demais se necessário. Outra solução bastante interessante é fazer uso de clusters e aumentar a quantidade de máquinas quando preciso.

Servidor da IBM com suporte a até 16 processadores

O aspecto da segurança

Para construir um ambiente de missão crítica, não basta apenas pensar nos computadores que farão parte do sistema, mas também no local onde será o ambiente e no acesso a ele.

Para começar, é ideal que os computadores fiquem em uma sala com proteção contra incêndios e climatização adequada. Se essa sala se localiza no subsolo, também é importante que seja protegida contra enchentes.

O acesso também deve ser controlado. Se um funcionário trabalha com suporte a clientes, não há razão para ele ter acesso à sala de servidores. Além disso, as pessoas autorizadas podem obedecer a uma política na qual devem dar satisfações sobre o que foi feito na sala. Se um funcionário autorizado sair da empresa, suas senhas de acesso devem ser eliminadas, para evitar que ele consiga acessar o sistema remotamente.

A disposição dos equipamentos e de cabos deve ser bem planejada também. Por exemplo, cabos não devem ficar expostos, do contrário, uma pessoa poderá tropeçar neles. Deve-se certificar que os armários suportam o peso dos equipamentos e, além disso, é necessário que estejam bem fixados, pois se, por exemplo, uma pessoa cair sobre o armário, este não será derrubado. A questão da disposição ainda deve considerar a possibilidade de retirar ou acrescentar equipamentos sem que outros sejam desligados.

Outra questão fundamental é a energia elétrica. Além de nobreaks – equipamentos com uma bateria que permite o funcionamento do computador quando a fonte de energia principal é cortada – é necessário avaliar a necessidade de instalação de geradores de energia. Isso é fundamental para manter os aparelhos da UTI de um hospital funcionando, por exemplo.

Obviamente, a questão da segurança não se limita ao aspecto físico. Os sistemas devem contar com firewalls, IDS (Intrusion Detection System – Sistemas de Detecção de Intrusos), criptografia, controle de acesso por níveis de usuário, entre outros.

A questão da segurança é tão importante que empresas de grande porte não mais centralizam suas operações. Por exemplo, uma multinacional pode replicar seus sistemas em filiais de outros países. Assim, se qualquer unidade parar de funcionar – por exemplo, num ataque terrorista ou em um acidente de cunho ambiental, como um furacão – os negócios da empresa não serão interrompidos.

Se uma empresa constata que terá custos altíssimos para trabalhar com o aspecto de segurança, uma alternativa é usar os serviços de IDCs (Internet Data Centers), como os das empresas Optiglobe, Embratel e Intelig. Essas companhias possuem ambientes que respondem a todos os quesitos de segurança e prestam serviços como: colocation (o cliente “aluga” o espaço físico e os meios de comunicação para instalar seus equipamentos), dedication (o IDC assume toda a operação dos equipamentos), entre outros.

Sala de um IDC

Storage

O volume de dados aumenta a cada dia nas empresas e por se tratar do ponto principal de um negócio, o tratamento a essa questão também é considerado em ambientes de missão crítica. Conforme citado no início deste texto, o que aconteceria se um banco perdesse dados de clientes? Quais as conseqüências de um loja on-line perder todos os dados relativos às vendas do dia? Ainda há o fato de que não bastar apenas ter os dados, também deve-se permitir o acesso a eles quando necessário e em um tempo satisfatório. Você já deve ter percebido o tamanho da encrenca…

Para lidar com esses aspectos, as empresas procuram as soluções de storage, isto é, de gerenciamento de dados. Duas delas são o SAN (Storage Area Network) e o NAS (Network Attached Storage). A primeira consiste numa rede de dispositivos de armazenamento de dados gerenciada por servidores sob uma rede de alta velocidade, como Fibre Channel (Fibra Óptica) e iSCSI. A segunda é um conjunto de meios de armazenamento integrado a uma rede LAN (Local Area Network) já existente.

Equipamento para storageO uso de SAN é indicado para situações onde dados precisam estar armazenados de forma segura e acessível em tempo hábil. Uma SAN permite o compartilhamento de dispositivos de armazenamento entre diversos servidores, estejam eles em um mesmo local ou dispostos remotamente. Uma vez que são constituídas por redes de alta velocidade, as SANs conseguem até mesmo evitar gargalos na rede, uma vez que estão aptas a trabalhar com grande volume de dados. Entre as empresas que oferecem soluções SAN estão IBM, HP e Itec.

Por sua vez, as NASs são soluções mais simples que as SANs, uma vez que sua implementação ocorre em redes já existentes. Em casos de criticidade maior, a solução em NAS pode contar com um canal dedicado (exclusivo) de acesso à rede. A grande vantagem de soluções desse tipo é o compartilhamento de dados fácil entre servidores e máquinas-cliente, mesmo quando há sistemas operacionais diferentes entre elas. Empresas como IBM, HP, EMC e Sun oferecem soluções em NAS.

Para mais informações sobre Storage, visite o site da SNIA (Storage Networking Industry Association): www.snia.org.

Finalizando

As tecnologias e recursos relacionados aos conceitos de missão crítica não se limitam aos citados aqui. O assunto é mais complexo, ao ponto de praticamente não existir especialistas em missão crítica, mas sim em alguma das tecnologias relacionadas. Como as necessidades computacionais variam de empresa para empresa, é necessário que cada uma identifique com clareza quais os segmentos operacionais que podem ser considerados críticos para então aplicar as soluções correspondentes. Na era da informação na qual adentramos, o que não se pode é relaxar quanto a esse aspecto. Não existe sistema à prova de falhas e não existe nada 100% seguro. Por isso é um erro limitar-se a uma solução ou não considerar um risco só porque ele é mínimo. Isso, talvez, deixa claro que o maior problema está no aspecto humano, altamente capaz de subestimar ou esperar algo ruim acontecer para tomar providências.

Fonte:

http://www.infowester.com/missaocritica.php

 

Moved to http://infoachei.com.br/
Thanks for visits!

Publicado em 1. Leave a Comment »

Hub , Switch, Roteador

Mudamos para http://infoachei.com.br/
Obrigado pela visita!
Introdução

Muita gente sabe que hub, switch e roteador são nomes dados a equipamentos que possibilitam a conexão de computadores em redes. Porém, dessas pessoas, muitas não sabem exatamente a diferença entre esses dispositivos. Este artigo explicará o que cada equipamento faz e indicará quando usar cada um.

Hub

O hub é um dispositivo que tem a função de interligar os computadores de uma rede local. Sua forma de trabalho é a mais simples se comparado ao switch e ao roteador: o hub recebe dados vindos de um computador e os transmite às outras máquinas. No momento em que isso ocorre, nenhum outro computador consegue enviar sinal. Sua liberação acontece após o sinal anterior ter sido completamente distribuído.

Em um hub é possível ter várias portas, ou seja, entradas para conectar o cabo de rede de cada computador. Geralmente, há aparelhos com 8, 16, 24 e 32 portas. A quantidade varia de acordo com o modelo e o fabricante do equipamento.

Caso o cabo de uma máquina seja desconectado ou apresente algum defeito, a rede não deixa de funcionar, pois é o hub que a “sustenta”. Também é possível adicionar um outro hub ao já existente. Por exemplo, nos casos em que um hub tem 8 portas e outro com igual quantidade de entradas foi adquirido para a mesma rede.

Hubs são adequados para redes pequenas e/ou domésticas. Havendo poucos computadores é muito pouco provável que surja algum problema de desempenho.

Switch

O switch é um aparelho muito semelhante ao hub, mas tem uma grande diferença: os dados vindos do computador de origem somente são repassados ao computador de destino. Isso porque os switchs criam uma espécie de canal de comunicação exclusiva entre a origem e o destino. Dessa forma, a rede não fica “presa” a um único computador no envio de informações. Isso aumenta o desempenho da rede já que a comunicação está sempre disponível, exceto quando dois ou mais computadores tentam enviar dados simultaneamente à mesma máquina. Essa característica também diminui a ocorrência de erros (colisões de pacotes, por exemplo).

Assim como no hub, é possível ter várias portas em um switch e a quantidade varia da mesma forma.

O hub está cada vez mais em desuso. Isso porque existe um dispositivo chamado “hub switch” que possui preço parecido com o de um hub convencional. Trata-se de um tipo de switch econômico, geralmente usado para redes com até 24 computadores. Para redes maiores mas que não necessitam de um roteador, os switchs são mais indicados.

 

Roteadores

O roteador (ou router) é um equipamento utilizado em redes de maior porte. Ele é mais “inteligente” que o switch, pois além de poder fazer a mesma função deste, também tem a capacidade de escolher a melhor rota que um determinado pacote de dados deve seguir para chegar em seu destino. É como se a rede fosse uma cidade grande e o roteador escolhesse os caminhos mais curtos e menos congestionados. Daí o nome de roteador.

Existem basicamente dois tipos de roteadores:

Estáticos: este tipo é mais barato e é focado em escolher sempre o menor caminho para os dados, sem considerar se aquele caminho tem ou não congestionamento;

Dinâmicos: este é mais sofisticado (e conseqüentemente mais caro) e considera se há ou não congestionamento na rede. Ele trabalha para fazer o caminho mais rápido, mesmo que seja o caminho mais longo. De nada adianta utilizar o menor caminho se esse estiver congestionado. Muitos dos roteadores dinâmicos são capazes de fazer compressão de dados para elevar a taxa de transferência.

Os roteadores são capazes de interligar várias redes e geralmente trabalham em conjunto com hubs e switchs. Ainda, podem ser dotados de recursos extras, como firewall, por exemplo.

 

Finalizando

Mesmo para quem quer montar um rede pequena, conectando, por exemplo, três computadores, o uso de “hubs switch” se mostra cada vez mais viável. Isso porque o preço desses equipamentos estão praticamente equivalentes aos dos hubs. Ainda, se você for compartilhar internet em banda larga, um hub switch pode proporcionar maior estabilidade às conexões.

Uma dica importante: ao procurar hubs, switchs ou até mesmo roteadores, dê preferência a equipamentos de marcas conhecidas. Isso pode evitar transtornos no futuro.

A utilização de roteadores é voltada a redes de empresas (redes corporativas). Além de serem mais caros (se bem que é possível até mesmo usar um PC com duas placas de rede como roteador), tais dispositivos também são mais complexos de serem manipulados e só devem ser aplicados se há muitos computadores na rede. No entanto, muitos usuários de acesso à internet por ADSL conseguem usar seus modems (se esses equipamentos tiverem esse recurso) como roteador e assim, compartilham a conexão da internet com todos os computadores do local, sem que, para tanto, seja necessário deixar o computador principal ligado. Basta deixar o modem/roteador ativado.

Fonte:

http://www.infowester.com/hubswitchrouter.php

Moved to http://infoachei.com.br/
Thanks for visits!

Publicado em 1. Leave a Comment »

Cluster – Principais Conceitos

Mudamos para http://infoachei.com.br/
Obrigado pela visita!
Introdução

Cluster pode ser definido como um sistema onde dois ou mais computadores trabalham de maneira conjunta para realizar processamento pesado. Em outras palavras, os computadores dividem as tarefas de processamento e trabalham como se fossem um único computador. Este artigo tem por objetivo mostrar os principais conceitos envolvidos, assim como os tipos e aplicações de cluster.

O que é cluster e como funciona

Também chamado de Clustering (quando visto em um contexto mais abrangente), Cluster é o nome dado a um sistema montado com mais de um computador, cujo objetivo é fazer com que todo o processamento da aplicação seja distribuído aos computadores, mas de forma que pareça com que eles sejam um computador só. Com isso, é possível realizar processamentos que até então somente computadores de alta performance seriam capazes de fazer.

Cada computador de um cluster é denominado nó ou nodo. Todos devem ser interconectados, de maneira a formarem uma rede, de qualquer topologia. Essa rede precisa ser criada de uma forma que permita o acréscimo ou a retirada de um nó (em casos de danos, por exemplo), mas sem interromper o funcionamento do cluster. O sistema operacional usado nos computadores deve ser de um mesmo tipo, ou seja, ou somente Windows, ou somente Linux, ou somente BSD, etc. Isso porque existe particularidades em cada sistema operacional que poderiam impedir o funcionamento do cluster.

Independente do sistema operacional usado, é preciso usar um software que permita a montagem do cluster em si. Esse software vai ser responsável, entre outras coisas, pela distribuição do processamento. Esse é um ponto crucial na montagem de um cluster. É preciso que o software trabalhe de forma que erros e defeitos sejam detectados, oferecendo meios de providenciar reparos, mas sem interromper as atividades do cluster. Obviamente, esse tipo de necessidade pode ser controlada através de um equipamento específico, ou seja, não depende apenas do software.

Para que exista, um cluster precisa de pelo menos dois computadores. Evidentemente, quanto mais computadores existir no cluster, maiores serão os custos de implementação e manutenção. Isso não se deve apenas ao preço dos computadores, mas também pelos equipamentos (switches, cabos, hubs, nobreaks, etc). Mas ainda assim, os custos costumam ser menores do que a aquisição/manutenção de computadores poderosos e algumas vezes o processamento é até mais eficiente (rápido).

Aplicações para Clusters

Os clusters podem ser usados para uma infinidade de aplicações. Basicamente, para qualquer uma que exija processamento pesado. Como exemplos de aplicações, temos previsão meteorológica (previsão do tempo e condições climáticas), simulações geotérmicas (ou seja, simulação de eventos no solo), renderização de efeitos especiais (muito usado em filmes), simulações financeiras, distribuição de carga, etc.

Basicamente, qualquer tipo de aplicação crítica, ou seja, aplicações que não podem parar de funcionar ou não podem perder dados (como os sistemas de bancos, por exemplo), podem utilizar as tecnologias de cluster, desde que devidamente configurados para não serem sujeitas a falhas graves. Assim, o cluster deve contar com nobreaks ou geradores que garantam o funcionamento do sistema mesmo nos casos de queda de energia, além de meios de manutenção e detecção de falhas eficientes, como já citado.

Cluster Beowulf

O nome Beowulf vem de um herói muito valente que tinha a missão de derrotar um monstro, num texto inglês antigo. Esse tipo de cluster, voltado à computação paralela, foi fundamentado em 1994, pela NASA, com a finalidade de processar as informações espaciais que a entidade recolhia. Desde então, grandes empresas (como HP e IBM) e universidades (como a brasileira Unesp) vêm construindo clusters deste tipo e como cada vez mais nós!

O que distingue o Cluster Beowulf dos outros tipos são as seguintes características (que são aplicadas de acordo com a finalidade do cluster):

– A conexão dos nós pode ser feita por redes do tipo Ethernet (mais comum);

– Existe um servidor responsável por controlar todo o cluster, principalmente quanto a distribuição de tarefas e processamento (pode haver mais de um servidor, dedicado a tarefas específicas, como monitoração de falhas). Este servidor é chamado de Front-end;

– O sistema operacional é baseado Linux, sendo necessário que ele contenha todos os programas para cluster;

– Pode-se usar computadores comuns, inclusive modelos considerados obsoletos; infowester

– Não é necessário usar equipamentos próprios para clusters. Basta equipamentos comuns à redes e os tradicionais PCs.

De maneira generalizada, o Cluster Beowulf permite a construção de sistemas de processamento que podem alcançar altos valores de gigaflops (um gigaflop equivale a 1 bilhão de instruções de ponto flutuante executadas por segundo). Isso tudo com o uso de computadores comuns e de um sistema operacional com código-fonte livre, ou seja, além de gratuito, pode ser melhorado para a sua finalidade. Tais características fizeram do Cluster Beowulf um tema muito explorado em universidades e claro, aplicado para vários fins.

Entre os requisitos para o sistema operacional de um Cluster Beowulf, estão a necessidade de se ter as bibliotecas para Parallel Virtual Machine (PVM) ou para Message Passing Interface (MPI). Ambos os tipos são usados para a troca de mensagens entre os nós do cluster. O MPI é mais avançado que o PVM, pois pode trabalhar com mensagens para todos os computadores ou para apenas um determinado grupo (por exemplo, quando somente este grupo vai realizar determinada tarefa).

Para mais informações sobre o Cluster Beowulf, visite www.beowulf.org.

Cluster Beowulf usando sistema operacional Red Hat LinuxFoto de um Cluster Beowulf usando sistema operacional Red Hat Linux

Outros tipos de cluster

Além do Beowulf, existem vários outros tipos de cluster, para os mais diversos fins. Os mais conhecidos são vistos a seguir:

Cluster para Alta Disponibilidade: quando se fala de Disponibilidade, fala-se do tempo em que determinado sistema permanece ativo e em condições de uso. A Alta Disponibilidade se refere a sistemas que praticamente não param de funcionar. Existem clusters deste tipo. Usados em aplicações de missão crítica, eles costumam ter meios eficientes de proteção e de detecção de falhas;

Cluster para Balanceamento de Carga: Balanceamento de Carga se refere à distribuição equilibrada de processamento aos nós do cluster. É muito usado na Internet, em servidores de e-mail, comércio eletrônico e em sistemas de lojas. Neste tipo de cluster, é necessário que haja monitoração constante da comunicação e mecanismos de redundância. Caso contrário, qualquer falha pode interromper o funcionamento do cluster;

Cluster Combo: este tipo combina as características dos clusters De Alta Disponibilidade e de Balanceamento de Carga.

Cluster MOSIX

MOSIX é a sigla para Multicomputer Operating System for UnIX. Trata-se de um conjunto de ferramentas de cluster para Linux, voltado ao tipo Balanceamento de Carga. Uma de suas principais características é a não necessidade de aplicações e recursos de software voltados ao cluster, como acontece com o Beowulf. O MOSIX é eficiente na tarefa de distribuição dinâmica de processamento entre os computadores do cluster. Esse tipo, assim como o Beowulf, é muito utilizado por universidades em pesquisas e projetos. Por ser baseado em Linux, sua implementação é transparente, além de ser relativamente fácil de instalar.

De maneira generalizada, O MOSIX é uma extensão para Linux (ou sistemas baseados em Unix) de um sistema de cluster que trabalha como se fosse um único supercomputador, por meio de conceitos de Distribuição de Processos e Balanceamento de Carga.

Para mais informações visite www.mosix.org.

Finalizando

As tecnologias de Clustering possibilitam a solução de diversos problemas que envolvem grande volume de processamento. As aplicações que um cluster pode ter são diversas, indo desde a simples melhora no desempenho de um determinado sistema ou a hospedagem de um site como o InfoWester, até o processo de pesquisas científicas complexas. O que realmente chama a atenção, é que todo o processamento pode ser feito de maneira que pareça ser um único computador dotado de alta capacidade. Assim, é possível que determinadas aplicações sejam implementadas em custer, mas sem interferir no funcionamento de outras aplicações que estejam relacionadas.

Empresas especializadas, centros de pesquisas e universidades costumam estudar este assunto a fundo. Como conseqüência, existem clusters com até milhares de nós. Um exemplo no Brasil, é um cluster que foi desenvolvido em 2003 por um aluno da Universidade Estadual Paulista (Unesp), de São Paulo. Baseado no tipo Beowulf, este cluster ficou bastante conhecido, por ajudar na pesquisa de medicamentos para o tratamento da tuberculose. O valor gasto neste projeto foi 60 mil reais. Se tivesse sido utilizado um supercomputador de capacidade equivalente, os gastos seriam até 17 vezes maior.

Só por este exemplo, é possível ver os vários benefícios do Clustering. Processamento eficiente, custo baixo, ampla gama de aplicações, enfim. Quem se sujeita a estudar estes conceitos (que são muito mais amplos do que o que foi explicado neste artigo) poderá não só ter sucesso profissional, mas ter um conhecimento grande sobre vários conceitos da computação em si.

Cluster com 16 computadoresFoto de um Cluster com 16 computadores

Fonte:

http://www.infowester.com/cluster.php

Moved to http://infoachei.com.br/
Thanks for visits!

Publicado em 1. Leave a Comment »

RAID – O que é?

Mudamos para http://infoachei.com.br/
Obrigado pela visita!
Introdução

Este artigo visa explicar os conceitos da tecnologia RAID, muito utilizada para operações críticas, onde não se pode perder dados ou ter serviços fora de funcionamento. Para um usuário normal, a perda de dados até que pode não fazer muita falta (mesmo que tenha, inclusive, valores sentimentais). Mas para empresas ou profissionais, a perda de informações pode significar prejuízos enormes. A tecnologia RAID, já consolidada e usada há alguns anos, é uma forma bastante eficiente de proteger informações e, no caso de empresas, garantir a permanência de seus negócios. Conheça, nas próximas linhas, os conceitos desta tecnologia.

O que é RAID

RAID é a sigla para Redundant Array of Independent Disks. Sua definição em português seria “Matriz Redundante de Discos Independentes”. Trata-se de uma tecnologia que combina vários discos rígidos (HD) para formar uma única unidade lógica, onde os mesmos dados são armazenados em todos (redundância). Em outras palavras, é um conjunto de HDs que funcionam como se fossem um só. Isso permite ter uma tolerância alta contra falhas, pois se um disco tiver problemas, os demais continuam funcionando, disponibilizando os dados. O RAID é uma tecnologia consolidada, já que surgiu pelas mãos de pesquisadores da Universidade de Berkesley, na California (EUA) no final da década de 1980.

Para que o RAID seja formado, é preciso utilizar pelo menos 2 HDs. O sistema operacional, neste caso, enxergará os discos como uma unidade lógica única. Quando há gravação de dados, os mesmos se repartem entre os discos do RAID (dependendo do nível). Com isso, além de garantir a disponibilidade dos dados em caso de falha de um disco, é possível também equilibrar o acesso às informações, de forma que não haja “gargalos”.

Os níveis de RAID

A tecnologia RAID funciona de várias maneiras. Tais maneiras são conhecidas como “níveis de RAID”. No total, existem 6 níveis básicos, os quais são mostrados a seguir:

RAID nível 0 – Este nível também é conhecido como “Striping” ou “Fracionamento”. Nele, os dados são divididos em pequenos segmentos e distribuídos entre os discos. Este nível não oferece tolerância a falhas, pois não existe redundância. Isso significa que uma falha em qualquer um dos HDs pode ocasionar perda de informações. Por essa razão, o RAID 0 é usado para melhorar a performance do computador, uma vez que a distribuição dos dados entre os discos proporciona grande velocidade na gravação e leitura de informações. Quanto mais discos houver, mais velocidade é obtida. Isso porque, se os dados fossem gravados em um único disco, esse processo seria feito de forma sequencial. Com o RAID, os dados cabíveis a cada disco são gravados ao mesmo tempo. O RAID 0, por ter estas características, é muito usado em aplicações de CAD e tratamento de imagens e vídeos.

RAID nível 1 – também conhecido como “Mirroring” ou “Espelhamento”, o RAID 1 funciona adicionando HDs paralelos aos HDs principais existentes no computador. Assim, se por exemplo, um computador possui 2 discos, pode-se aplicar mais um HD para cada um, totalizando 4. Os discos que foram adicionados, trabalham como uma cópia do primeiro. Assim, se o disco principal recebe dados, o disco adicionado também os recebe. Daí o nome de “espelhamento”, pois um HD passa a ser uma cópia praticamente idêntica do outro. Dessa forma, se um dos HDs apresentar falha, o outro imediatamente pode assumir a operação e continuar a disponibilizar as informações. A conseqüência neste caso, é que a gravação de dados é mais lenta, pois é realizada duas vezes. No entanto, a leitura dessas informações é mais rápida, pois pode-se acessar duas fontes. Por esta razão, uma aplicação muito comum do RAID 1 é seu uso em servidores de arquivos.

RAID nível 2 – este tipo de RAID, adapta o mecanismo de detecção de falhas em discos rígidos para funcionar em memória. Assim, todos os discos da matriz ficam sendo “monitorados” pelo mecanismo. Atualmente, o RAID 2 é pouco usado, uma vez que praticamente todos os discos rígidos novos saem de fábrica com mecanismos de detecção de falhas implantados.

RAID nível 3 – neste nível, os dados são divididos entre os discos da matriz, exceto um, que armazena informações de paridade. Assim, todos os bytes dos dados tem sua paridade (acréscimo de 1 bit, que permite identificar erros) armazenada em um disco específico. Através da verificação desta informação, é possível assegurar a integridade dos dados, em casos de recuperação. Por isso e por permitir o uso de dados divididos entre vários discos, o RAID 3 consegue oferecer altas taxas de transferência e confiabilidade das informações. Para usar o RAID 3, pelo menos 3 discos são necessários.

RAID nível 4 – este tipo de RAID, basicamente, divide os dados entre os discos, sendo que um é exclusivo para paridade. A diferença entre o nível 4 e o nível 3, é que em caso de falha de um dos discos, os dados podem ser reconstruídos em tempo real através da utilização da paridade calculada a partir dos outros discos, sendo que cada um pode ser acessado de forma independente. O RAID 4 é indicado para o armazenamento de arquivos grandes, onde é necessário assegurar a integridade das informações. Isso porque, neste nível, cada operação de gravação requer um novo cálculo de paridade, dando maior confiabilidade ao armazenamento (apesar de isso tornae as gravações de dados mais lentas).

RAID nível 5 – este é muito semelhante ao nível 4, exceto o fato de que a paridade não fica destinada a um único disco, mas a toda a matriz. Isso faz com que a gravação de dados seja mais rápida, pois não é necessário acessar um disco de paridade em cada gravação. Apesar disso, como a paridade é distribuída entre os discos, o nível 5 tende a ter um pouco menos de performance que o RAID 4. O RAID 5 é o nível mais utilizado e que oferece resultados satisfatórios em aplicações não muito pesadas. Este nível precisa de pelo menos 3 discos para funcionar.

RAID 0 + 1 – O RAID 0 + 1 é uma combinação dos níveis 0 (Striping) e 1 (Mirroring), onde os dados são divididos entre os discos para melhorar o rendimento, mas também utilizam outros discos para duplicar as informações. Assim, é possível utilizar o bom rendimento do nível 0 com a redundância do nível 1. No entanto, é necessário pelo menos 4 discos para montar um RAID desse tipo. Tais características fazem do RAID 0 + 1 o mais rápido e seguro, porém o mais caro de ser implantado. A ilustração abaixo ilustra este tipo de RAID:

Tipos de RAID

Sistema RAIDExistem 2 tipos de RAID, sendo um baseado em hardware e o outro baseado em software. Cada uma possui vantagens e desvantagens. O primeiro tipo é o mais utilizado, pois não depende de sistema operacional (pois estes enxergam o RAID como um único disco grande) e são bastante rápidos, o que possibilita explorar integralmente seus recursos. Sua principal desvantagem é ser um tipo caro inicialmente. A foto ao lado mostra um poderoso sistema RAID baseado em hardware. Repare que na base da direita estão armazenados vários discos:

O RAID baseado em hardware, utiliza dispositivos denominados “controladores RAID”, que podem ser, inclusive, conectados em slots PCI da placa-mãe do computador. Já o RAID baseado em software não é muito utilizado, pois apesar de ser menos custoso, é mais lento, possui mais dificuldades de configuração e depende do sistema operacional para ter um desempenho satisfatório. Este tipo ainda fica dependente do poder de processamento do computador em que é utilizado.

Finalizando

A tecnologia RAID é um dos principais conceitos quando o assunto é armazenamento de dados. Sua eficiência é comprovada por se tratar de uma tecnologia em uso há vários anos e que mesmo assim “não sai de moda”. Grandes empresas, como a Intel, oferecem soluções de RAID, e essa tecnologia é possível de ser encontrada até mesmo em computadores domésticos. É muito provável que o RAID ainda venha a apresentar novos meios de funcionalidades, ampliando seu uso para os mais diversos tipos de necessidade de armazenamento e acesso à dados.

Fonte:

http://www.infowester.com/raid.php

Moved to http://infoachei.com.br/
Thanks for visits!

Publicado em 1. Leave a Comment »

HDMI (High Definition Multimedia Interface) O que é?

Mudamos para http://infoachei.com.br/
Obrigado pela visita!

Moved to http://infoachei.com.br/
Thanks for visits!

Introdução

A indústria do entretenimento tem realizado grandes feitos no que diz respeito às tecnologias de execução de áudio e vídeo. Hoje, já é possível ter em casa um “cinema particular”, utilizando, por exemplo, TVs ou projetores de alta resolução aliados a um sistema de áudio potente e cristalino. Junte isso à disponibilização de conteúdo mutimídia na internet, e você terá uma verdadeira central de entretenimento em casa. O único problema nessa história toda pode ser a confusão de cabos para interconectar os aparelhos, mas o HDMI (sigla para High-Definition Multimedia Interface) surge para dar uma ajudinha nessa questão.

O HDMI é uma tecnologia de conexão capaz de lidar com áudio e vídeo ao mesmo tempo, isto é, não é necessário ter um cabo separado para cada coisa. Além disso, toda transmissão do HDMI é feita através de sinais digitais, o que torna a tecnologia apta a transmitir vídeo e áudio de altíssima qualidade. Que tal conhecer mais vantagens do HDMI e entender um pouco do seu funcionamento? É o que você verá a seguir.

O que é HDMI

HDMI é um padrão de conexão de dispositivos de áudio e vídeo que tem tudo para substituir os padrões existentes até então. Por trás de seu desenvolvimento está um time de gigantes da indústria eletrônica, tais como Sony, Philips, Toshiba, Silicon Image, entre outras. Com essa tecnologia, é possível, por exemplo, conectar um reprodutor de HD-DVD a uma TV de alta resolução, e ter como resultado imagens de excelente qualidade. Através de um cabo HDMI, é possível transmitir sinais de áudio e vídeo. Em outros padrões, é necessário ter, pelo menos, um cabo para cada coisa.

Mas, as vantagens do HDMI não se limitam a isso. Essa é uma tecnologia que transmite sinais de forma totalmente digital. Graças a isso, é possível ter imagens de excelente qualidade e resoluções altas (1080p, por exemplo), inclusive maiores que as suportadas pela tecnologia DVI (Digital Visual Interface), que está substituindo o padrão VGA para as conexões de monitores em computadores.

O conector do cabo HDMI também leva vantagem em relação aos demais padrões, já que possui tamanho reduzido e encaixe fácil, semelhante aos conectores USB. Na verdade, a indústria definiu dois tipos de conectores: o HDMI tipo A e HDMI tipo B, com 19 e 29 pinos, respectivamente. O conector tipo A é o mais comum do mercado, já que consegue atender a toda a demanda existente, sendo inclusive compatível com a tecnologia DVI-D. Neste caso, basta que uma ponta do cabo seja DVI-D e, a outra, HDMI. O conector HDMI tipo B é destinado a resoluções mais altas e pode trabalhar com o esquema dual link, que duplica a freqüência pixel clock (assunto abordado logo abaixo), fazendo com que a transmissão dobre a sua capacidade.

Funcionamento do HDMI

A citação da tecnologia DVI no tópico anterior não foi mero acaso. Tanto o DVI quanto o HDMI fazem uso de um protocolo chamado Transition Minimized Differential Signaling (TMDS), o que os tornam, até certo ponto, parecidos. No HDMI, são usados três canais TMDS para a transmissão das informações de áudio e vídeo. Os dispositivos que iniciam a transmissão são chamados de sources. Por sua vez, os dispositivos que recebem o sinal da transmissão são chamados de sinks.

A tecnologia TMDS exerce uma função extremamente importante na transmissão HDMI porque, embora o sinal seja todo digital, isso não significa que está livre de falhas e interferências. Com os canais TMDS, a transmissão de dados pode ser feita de maneira codificada, tornando-a protegida. Isso é possível porque o canal TMDS utiliza um esquema de cancelamento. Nele, o sinal é duplicado, porém o segundo sinal é invertido. O dispositivo receptor recebe ambos os sinais e os compara. As diferenças encontradas nessa comparação permitem identificar as alterações indevidas – isto é, os ruídos da transmissão – e descartá-las.

Quando a transmissão é iniciada, os três canais TMDS são utilizados para o envio de dados de vídeo, o chamado Video Data Period. Cada canal envia 8 bits por vez, totalizando 24 bits. Isso é feito numa freqüência denominada pixel clock que varia de 25 MHz a 165 MHz. No caso de transmissões que não alcançam os 25 MHz, como o que acontece em sinais PAL e NTSC, é feito uso de uma técnica de repetição de pixels. Com esse modo de funcionamento, o HDMI pode transmitir mais de 165 milhões de pixels.

A ilustração abaixo é acompanhada de uma tabela que mostra os pinos do conector HDMI tipo A. Note que cada canal TMDS utiliza dois pinos, totalizando 6. Há também um par de pinos utilizado para a freqüência do TMDS, o TMDS clock. Cada par é protegido de interferências por um pino shield:

 

Via Sinal
1 TMDS Data2+
2 TMDS Data2 Shield
3 TMDS Data2–
4 TMDS Data1+
5 TMDS Data1 Shield
6 TMDS Data1–
7 TMDS Data0+
8 TMDS Data0 Shield
9 TMDS Data0–
10 TMDS Clock+
11 TMDS Clock Shield
12 TMDS Clock–
13 CEC
14 Reservado
15 SCL
16 SDA
17 DDC/CEC Ground
18 +5 V Power
19 Hot Plug Detect

 

Versões do HDMI

A tecnologia HDMI passou por várias revisões em suas especificações desde a disponibilização da primeira versão. A vantagem disso é que cada versão adiciona melhorias à tecnologia. Por outro lado, isso causa confusão e, em determinadas situações, pode provocar o impedimento do envio do sinal. Esse problema pode ocorrer, por exemplo, se o dispositivo receptor trabalhar com uma versão inferior à versão utilizada pelo dispositivo emissor. Para lidar com essa possibilidade, a indústria desenvolveu técnicas que garantem a transmissão dos dados. A diferença é que, se a transmissão requerer algum recurso existente na versão mais recente, o dispositivo com a versão anterior não poderá utilizá-la.

A seguir, uma breve descrição das principais características das revisões existentes até a publicação deste texto no InfoWester:

HDMI 1.0: lançado oficialmente no final de 2002, a primeira versão do HDMI é caracterizada por utilizar cabo único para transmissão de vídeo e áudio com um taxa de transmissão de dados de 4,95 Gbps à uma freqüência de 165 MHz. É possível ter até 8 canais de áudio;

HDMI 1.1: semelhante à versão 1.0, porém com a adição de compatibilidade ao padrão DVD-Audio. Lançado em maio de 2004;

HDMI 1.2: adicionado suporte a formatos de áudio do tipo One Bit Audio, usados, por exemplo, em SACD (Super Audio CD). Incluído suporte à utilização do HDMI em PCs e a novos esquemas de cores. Lançado em agosto de 2005;

HDMI 1.2a: lançado em dezembro de 2005, esta revisão adotou as especificações Consumer Electronic Control (CEC) e recursos específicos para controle remoto;

HDMI 1.3: nesta versão, o HDMI passou a suportar freqüência de até 340 MHz, permitindo transmissões de até 10,2 Gbps. Além disso, a versão 1.3 permite a utilização de uma gama maior de cores e suporte às tecnologias Dolby TrueHD e DTS-HD Master Audio. Essa versão também possibilitou o uso de um novo mini-conector, apropriado a câmeras de vídeo portáteis, e elimina um problema de sincronismo entre o áudio e o vídeo (lip sync). O lançamento do HDMI 1.3 se deu em junho de 2006;

HDMI 1.3a e 1.3b: lançado em novembro de 2006 e outubro de 2007, respectivamente, essas revisões contam com leves alterações nas especificações da versão 1.3 e com a adição de alguns testes, inclusive em relação ao HDCP, visto no próximo tópico.

Proteção de conteúdo por HDCP

Muita gente “torce o nariz” quando descobre o que o HDCP significa e o que representa para a tecnologia HDMI. Trata-se de uma sigla para High-Bandwidth Digital Copy Protection, uma tecnologia desenvolvia pela Digital Content Protection, LLC (pertencente à Intel) com a finalidade de evitar a distribuição ilegal de conteúdo. Seu funcionamento se dá, basicamente, da seguinte forma: o source (dispositivo emissor) se comunica com o sink (dispositivo receptor) por meio de um canal denominado Display Data Channel (DDC) para conhecer a sua configuração e obter um código de autenticação. Esses dados ficam em um chip denominado Extended Display Identification Data (EDID). Se o código de ambos os aparelhos forem compatíveis, o source obtem um novo código e o envia ao sink. O envio e o recebido das informações de um dispositivo para o outro é feito com base nesse código. Esse código é checado a um determinado intervalo e, se alguma anormalidade for encontrada, a transmissão é interrompida. Isso pode ocorrer, por exemplo, se um terceiro dispositivo tentar receber os dados da conexão.

A indústria implementou esse esquema no HDMI para evitar a pirataria, mas para muita gente, essa não é a melhor maneira de lidar com o problema e, assim todas as medidas de segurança rigorosas, o usuário honesto é que pode ser prejudicado. Se a obtenção da chave de autenticação falhar por algum motivo, mesmo o usuário não tendo qualquer responsabilidade sobre isso, ele não conseguirá visualizar o seu vídeo. Em alguns casos, o usuário descobre que se desconectar e reconectar os aparelhos, talvez tudo funcione, uma prática lamentável para uma tecnologia tão avançada.

Resolução

Quando o assunto é HDMI (ou outras tecnologias relacionadas, como o HDTV – High-Definition Television), é comum a menção de resoluções como 720p e 1080p. Mas, o que isso significa? Embora pareça complicado, essas nomenclaturas simplesmente facilitam a identificação da quantidade de pixels suportava pelo dispositivo, além do uso de progressive scan ou interlaced scan. No progressive scan, todas as linhas de pixels da tela são atualizadas simultaneamente. Por sua vez, no modo interlaced scan, primeiro as linhas pares recebem atualização e, em seguida, as linhas ímpares (ou seja, é um esquema do tipo: linha sim, linha não). Em geral, o modo progressive scan oferece melhor qualidade de imagem.

Assim sendo, a letra ‘p’ existente em 720p, 1080p e outras resoluções, indica que o modo usado é progressive scan. Se for utilizado interlaced scan, a letra usada é ‘i’ (por exemplo, 1080i). O número, por sua vez, indica a quantidade de linhas de pixels na horizontal. Isso significa que a resolução 1080p, por exemplo, conta com 1080 linhas horizontais e funciona com progressive scan. Eis algumas resoluções comuns:

480i = 640×480 pixels com interlaced scan;
480p = 640×480 pixels com progressive scan;
720i = 1280×720 pixels com interlaced scan;
720p = 1280×720 pixels com progressive scan;
1080i = 1920×1080 pixels com interlaced scan;
1080p = 1920×1080 pixels com progressive scan.

Finalizando

O padrão VGA foi, por mais de 20 anos, o principal meio de conexão de monitores a computadores, mas agora está cedendo o seu “reinado” ao padrão DVI (saiba mais sobre os padrões VGA e DVI neste artigo). Será que o HDMI conseguirá fazer o mesmo para conexões entre TVs e dispositivos de execução de vídeo (como um leitor de HD-DVD, por exemplo)? A resposta é: talvez.

O HDMI já está presente em vários aparelhos que trabalham com imagens de alta qualidade (tal como o console PlayStation 3, da Sony), sendo bastante comum nos atuais sistemas de home theater. Mas, ainda é cedo para dizer se essa tecnologia será dominante no mercado. Há várias razões para isso, entre elas: implementação cara (principalmente por causa do pagamento de royalties), possível confusão por causa das várias revisões e o surgimento de tecnologias semelhantes, como os padrões DisplayPort, Unified Display Interface (UDI) e WirelessHD (sem fio).

De qualquer forma, vale a pena investir em aparelhos compatíveis com a tecnologia HDMI (especialmente com a última revisão vigente). Pode ser que o padrão não fique muito tempo no mercado, mas se isso acontecer, certamente não sumirá rapidamente.

Fonte:

http://www.infowester.com/hdmi.php

Publicado em 1. Leave a Comment »

Bluetooth – O que é?

Mudamos para http://infoachei.com.br/
Obrigado pela visita!

Moved to http://infoachei.com.br/
Thanks for visits!

O Bluetooth é uma tecnologia que permite uma comunicação simples, rápida, segura e barata entre computadores, smartphones, telefones celulares, mouses, teclados, fones de ouvido, impressoras e outros dispositivos, utilizando ondas de rádio no lugar de cabos. Assim, é possível fazer com que dois ou mais dispositivos comecem a trocar informações com uma simples aproximação entre eles. Que tal saber um pouco sobre como o Bluetooth funciona e conhecer mais algumas de suas características? É o que você verá nas próximas linhas.

 

O que é Bluetooth

Bluetooth é um padrão global de comunicação sem fio e de baixo consumo de energia que permite a transmissão de dados entre dispositivos compatíveis com a tecnologia. Para isso, uma combinação de hardware e software é utilizada para permitir que essa comunicação ocorra entre os mais diferentes tipos de aparelhos. A transmissão de dados é feita através de radiofreqüência, permitindo que um dispositivo detecte o outro independente de suas posições, desde que estejam dentro do limite de proximidade.

Para que seja possível atender aos mais variados tipos de dispositivos, o alcance máximo do Bluetooth foi dividido em três classes:

Classe 1: potência máxima de 100 mW, alcance de até 100 metros;
Classe 2: potência máxima de 2,5 mW, alcance de até 10 metros;
Classe 3: potência máxima de 1 mW, alcance de até 1 metro.

Isso significa que um aparelho com Bluetooth classe 3 só conseguirá se comunicar com outro se a distância entre ambos for inferior a 1 metro, por exemplo. Neste caso, a distância pode parecer inutilizável, mas é suficiente para conectar um fone de ouvido a um telefone celular pendurado na cintura de uma pessoa. É importante frisar, no entanto, que dispositivos de classes diferentes podem se comunicar sem qualquer problema, bastando respeitar o limite daquele que possui um alcance menor.

A velocidade de transmissão de dados no Bluetooth é baixa: até a versão 1.2, a taxa pode alcançar, no máximo, 1 Mbps. Na versão 2.0, esse valor passou para até 3 Mbps. Embora essas taxas sejam curtas, são suficientes para uma conexão satisfatória entre a maioria dos dispositivos.

 

Surgimento do Bluetooth

Logotipo Bluetooth A história do Bluetooth começa em meados de 1994. Na época, a empresa Ericsson começou a estudar a viabilidade de desenvolver uma tecnologia que permitisse a comunicação entre telefones celulares e acessórios utilizando sinais de rádio de baixo custo, ao invés dos tradicionais cabos. O estudo era feito com base em um projeto que investigava o uso de mecanismos de comunicação em redes de telefones celulares, que resultou em um sistema de rádio de curto alcance que recebeu o nome MCLink. Com a evolução do projeto, a Ericsson percebeu que o MCLink poderia dar certo, já que o seu principal atrativo era uma implementação relativamente fácil e barata.

Em 1997, o projeto começou a despertar o interesse de outras empresas que, logo, passaram a fornecer apoio. Por conta disso, em 1998 foi criado o consórcio Bluetooth SIG (Special Interest Group), formado pelas empresas Ericsson, Intel, IBM, Toshiba e Nokia. Note que esse grupo é composto por dois “gigantes” das telecomunicações (Ericsson e Nokia), dois nomes de peso na fabricação de PCs (IBM e Toshiba) e a líder no desenvolvimento de chips e processadores (Intel). Essa diversidade foi utilizada para permitir o desenvolvimento de padrões que garantissem o uso e a interoperabilidade da tecnologia nos mais variados dispositivos.

A partir daí, o Bluetooth começou a virar realidade, inclusive pela adoção desse nome. A denominação Bluetooth é uma homenagem a um rei dinamarquês chamado Harald Blåtand, mais conhecido como Harald Bluetooth (Haroldo Dente-Azul). Um de seus grandes feitos foi a unificação da Dinamarca, e é em alusão a esse fato que o nome Bluetooth foi escolhido, como que para dizer que a tecnologia proporciona a unificação de variados dispositivos. O logotipo do Bluetooth é a junção de dois símbolos nórdicos que correspondem às iniciais de Harald.

 

Freqüência e comunicação

O Bluetooth é uma tecnologia criada para funcionar no mundo todo, razão pela qual se fez necessária a adoção de uma freqüência de rádio aberta, que seja padrão em qualquer lugar do planeta. A faixa ISM (Industrial, Scientific, Medical), que opera à freqüência de 2,45 GHz, é a que me mais se aproxima dessa necessidade e é utilizada em vários países, com variações que vão de 2,4 GHz à 2,5 GHz.

Como a faixa ISM é aberta, isto é, pode ser utilizada por qualquer sistema de comunicação, é necessário garantir que o sinal do Bluetooth não sofra e não gere interferências. O esquema de comunicação FH-CDMA (Frequency Hopping – Code-Division Multiple Access), utilizado pelo Bluetooth, permite tal proteção, já que faz com que a freqüência seja dividida em vários canais. O dispositivo que estabelece a conexão vai mudando de um canal para outro de maneira muito rápida. Esse esquema é chamado “salto de freqüência” (frequency hopping). Isso faz com que a largura de banda da freqüência seja muito pequena, diminuindo sensivelmente as chances de uma interferência. No Bluetooth, pode-se utilizar até 79 freqüências (ou 23, dependendo do país) dentro da faixa ISM, cada uma espaçada da outra por 1 MHz.

Como um dispositivo se comunicando por Bluetooth pode tanto receber quanto transmitir dados (modo full-duplex), a transmissão é alternada entre slots para transmitir e slots para receber, um esquema denominado FH/TDD (Frequency Hopping/Time-Division Duplex). Esses slots são canais divididos em períodos de 625 µs (microsegundos). Cada salto de freqüência deve ser ocupado por um slot, logo, em 1 segundo, tem-se 1600 saltos.

 

No que se refere ao enlace, isto é, à ligação entre o emissor e receptor, o Bluetooth faz uso, basicamente, de dois padrões: SCO (Synchronous Connection-Oriented) e ACL (Asynchronous Connection-Less). O primeiro estabelece um link sincronizado entre o dispositivo master e o dispositivo escravo, onde é feito uma reserva de slots para cada um. Assim, o SCO acaba sendo utilizado principalmente em aplicações de envio contínuo de dados, como voz. Por funcionar dessa forma, o SCO não permite a retransmissão de pacotes de dados perdidos. Quando ocorre perda em uma transmissão de áudio, por exemplo, o dispositivo receptor acaba reproduzindo som com ruído. A taxa de transmissão de dados no modo SCO é de 432 Kbps, sendo de 64 Kbps para voz.

 

O padrão ACL, por sua vez, estabelece um link entre um dispositivo master e os dispositivos slaves existentes em sua rede. Esse link é assíncrono, já que utiliza os slots previamente livres. Ao contrário do SCO, o ACL permite o reenvio de pacotes de dados perdidos, garantindo a integridade das informações trocadas entre os dispositivos. Assim, acaba sendo útil para aplicações que envolvam transferência de arquivos, por exemplo. A velocidade de transmissão de dados no modo ACL é de até 721 Kbps.

 

Redes Bluetooth

Quando dois ou mais dispositivos se comunicam através de uma conexão Bluetooth, eles formam uma rede denominada piconet. Nessa comunicação, o dispositivo que iniciou a conexão assume o papel de master (mestre), enquanto que os demais dispositivos se tornam slave (escravos). Cabe ao master a tarefa de regular a transmissão de dados entre a rede e o sincronismo entre os dispositivos.

Cada piconet pode suportar até 8 dispositivos (um master e 7 slaves), no entanto, é possível fazer com esse número seja maior através da sobreposição de piconets. Em poucas palavras, isso significa fazer com que uma piconet se comunique com outra dentro de um limite de alcance, esquema esse denominado scatternet. Note que um dispositivo slave pode fazer parte de mais de uma piconet ao mesmo tempo, no entanto, um master só pode ocupar essa posição em uma única piconet.

Ilustração de piconet e scatternet

Para que cada dispositivo saiba quais outros fazem parte de sua piconet, é necessário fazer uso de um esquema de identificação. Para isso, um dispositivo que deseja estabelecer uma conexão em uma piconet já existente pode emitir um sinal denominado Inquiry. Os dispositivos que recebem o sinal respondem com um pacote FHS (Frequency Hopping Synchronization) informando a sua identificação e os dados de sincronismo da piconet. Com base nessas informações, o dispositivo pode então emitir um sinal chamado Page para estabelecer uma conexão com outro dispositivo.

Como o Bluetooth é uma tecnologia que também oferece como vantagem economia de energia, um terceiro sinal denominado Scan é utilizado para fazer com que os dispositivos que estiverem ociosos entrem em stand-by, isto é, operem em um modo de descanso, poupando eletricidade. Todavia, dispositivos neste estado são obrigados a “acordar” periodicamente para checar se há outros aparelhos tentando estabelecer conexão.

 

Versões do Bluetooth

O Bluetooth é uma tecnologia em constante evolução, o que faz com que suas especificações mudem e novas versões surjam com o tempo. Até o momento do fechamento deste artigo no InfoWester, as versões disponíveis eram:

– 1.0: a versão 1.0 (e a versão 1.0B) representa as primeiras especificações do Bluetooth. Por ser a primeira, os fabricantes encontravam problemas que dificultavam a implementação e a interoperabilidade entre dispositivos com Bluetooth;

– 1.1: lançada em fevereiro de 2001, a versão 1.1 representa o estabelecimento do Bluetooth como um padrão IEEE 802.15. Nela, muitos problemas encontrados na versão 1.0B foram solucionados e o suporte ao sistema RSSI foi implementado;

– 1.2: lançada em novembro de 2003, a versão 1.2 tem como principais novidades conexões mais rápidas, melhor proteção contra interferências, suporte aperfeiçoado a scatternets e processamento de voz mais avançado;

– 2.0: lançada em novembro de 2004, a versão 2.0 trouxe importantes aperfeiçoamentos ao Bluetooth: diminuição do consumo de energia, aumento na velocidade de transmissão de dados para 3 Mbps (2.1 Mbps efetivos), correção às falhas existentes na versão 1.2 e melhor comunicação entre os dispositivos;

– 2.1: lançada em agosto de 2007, a versão 2.1 tem como principais destaques o acréscimo de mais informações nos sinais Inquiry (permitindo uma seleção melhorada dos dispositivos antes de estabelecer uma conexão), melhorias nos procedimentos de segurança (inclusive nos recursos de criptografia) e melhor gerenciamento do consumo de energia.

O fato de haver várias versões não significa que um dispositivo com uma versão atual não funcione com outro com uma versão inferior, embora possam haver exceções. Todavia, se um dispositivo 2.0 for conectado a outro de versão 1.2, por exemplo, a velocidade da transmissão de dados será limitada à taxa suportada por este último.

 

Finalizando

Com a popularização das redes WiFi, o mercado ficou com dúvidas em relação ao futuro do Bluetooth, mas o aumento expressivo de aparelhos compatíveis com a tecnologia fez com que todos os temores se dissolvessem. E faz sentido: o objetivo do Bluetooth é permitir a intercomunicação de dispositivos próximos utilizando o menor consumo de energia possível (mesmo porque muitos desses dispositivos são alimentados por baterias) e um custo de implementação baixo. O WiFi , por sua vez, se mostra mais como um concorrente das tradicionais redes de computadores com fio (padrão Ethernet, em sua maioria).

No início de 2008, o Bluetooth SIG comemorou os 10 anos da chegada do Bluetooth ao mercado. E não será surpresa se o aniversário de 20 anos for comemorado: em 1998, o grupo contava apenas com cinco empresas integrantes. Hoje, esse número passa de dez mil, o que significa que um futuro ainda mais promissor pode estar reservado ao Bluetooth. Prova disso é a promessa de lançamento da versão 3.0 que, entre outras vantagens, poderá oferecer uma conexão de até 480 Mbps.

Fonte:

http://www.infowester.com/bluetooth.php

Publicado em 1. Leave a Comment »

WI-Fi(IEEE 802.11) O que é?

Mudamos para http://infoachei.com.br/
Obrigado pela visita!

Moved to http://infoachei.com.br/
Thanks for visits!

Por muito tempo, só foi possível interconectar computadores através de cabos. Embora esse tipo de conexão seja bastante popular, conta com algumas limitações, por exemplo: só é possível movimentar o computador até o limite de alcance do cabo; ambientes com muitos computadores podem exigir adaptações na estrutura do prédio para a passagem dos fios; em uma casa, pode ser necessário fazer furos na parede para que os cabos alcancem outros cômodos; e a manipulação constante ou incorreta pode fazer com que o conector do cabo se danifique. Atualmente, é possível evitar esses e outros problemas com o uso da tecnologia Wi-Fi, que permite a interconexão de computadores através de redes sem fio (wireless). A implementação desse tipo de rede está se tornando cada vez mais comum, não só nos ambientes domésticos e empresariais, mas também em locais públicos (bares, lanchonetes, shoppings, livrarias, aeroportos, etc) e em instituições acadêmicas. Por esta razão, o InfoWester mostra nas próximas linhas as principais características da tecnologia Wi-Fi, explica um pouco do seu funcionamento e dá algumas importantes dicas de segurança.

 

O que é Wi-Fi

Wi-Fi é um conjunto de especificações para redes locais sem fio (WLAN – Wireless Local Area Network) baseada no padrão IEEE 802.11. O nome Wi-Fi é tido como uma abreviatura do termo inglês “Wireless Fidelity”, embora a Wi-Fi Alliance, entidade responsável principalmente pelo licenciamento de produtos baseados na tecnologia, nunca tenha afirmado tal conclusão. É comum encontrar o nome Wi-Fi escrito como WiFi, Wi-fi ou até mesmo wifi. Todas essas denominações se referem à mesma tecnologia.

Com a tecnologia Wi-Fi, é possível implementar redes que conectam computadores e outros dispositivos compatíveis (telefones celulares, consoles de videogame, impressoras, etc) que estejam próximos geograficamente. Essas redes não exigem o uso de cabos, já que efetuam a transmissão de dados através de radiofreqüência. Esse esquema oferece várias vantagens: permite ao usuário utilizar a rede em qualquer ponto dentro dos limites de alcance da transmissão por não exigir que cada elemento conectado use um cabo, permite a inserção rápida de outros computadores e dispositivos na rede, evita que paredes sejam furadas ou adaptadas para a passagem de fios, entre outros.

A flexibilidade do Wi-Fi é tão grande, que se tornou viável a implementação de redes que fazem uso dessa tecnologia nos mais variados lugares, principalmente pelo fato das vantagens citadas no parágrafo anterior resultarem em diminuição de custos. Assim sendo, é comum encontrar redes Wi-Fi disponíveis em hotéis, aeroportos, rodoviárias, bares, restaurantes, shoppings, escolas, universidades, escritórios, hospitais, etc, que oferecem acesso à internet, muitas vezes de maneira gratuita. Para utilizar essas redes, basta ao usuário ter algum laptop, smartphone ou qualquer dispositivo compatível com Wi-Fi.

 

Um pouco da história do Wi-Fi

Logotipo Wi-Fi AllianceA idéia de se criar redes sem fio não é nova. A indústria se preocupa com essa questão há tempos, mas a falta de padronização de normas e especificações se mostrou como um empecilho, afinal, vários grupos de pesquisa existentes trabalhavam com propostas diferentes. Por esta razão, algumas empresas, como 3Com, Nokia, Lucent Technologies (atualmente Alcatel-Lucent) e Symbol Technologies (adquirida pela Motorola), se uniram para criar um grupo para lidar com essa questão e, assim, nasceu em 1999 a Wireless Ethernet Compatibility Alliance (WECA), que passou a se chamar Wi-Fi Alliance, em 2003. Assim como acontece com outros consórcios de padronização de tecnologias, o número de empresas que se associam à Wi-Fi Alliance aumenta constantemente. No momento em que esse artigo era escrito, o grupo contava com a participação de mais de 300 empresas e entidades.

A WECA passou a trabalhar com as especificações IEEE 802.11 que, na verdade, não é muito diferente das especificações IEEE 802.3. Esta última é conhecida pelo nome Ethernet e simplesmente consiste na grande maioria das tradicionais redes com fio. Essencialmente, o que muda de um padrão para o outro são suas características de conexão: um tipo funciona com cabos, o outro, por radiofreqüência. A vantagem disso é que não é necessária a criação de nenhum protocolo específico para a comunicação de redes sem fios baseada nessa tecnologia. Além disso, é possível ter redes que utilizam ambos os padrões.

Com um caminho a seguir, a WECA ainda precisava lidar com outra questão: um nome apropriado à tecnologia, que fosse de fácil pronúncia e que permitisse rápida associação à sua proposta, isto é, às redes sem fio. Para isso, a WECA contratou uma empresa especializada em marcas, a Interbrand, que acabou criando não só a denominação Wi-Fi (provavelmente com base no tal termo “Wileress Fidelity”), como também o logotipo da tecnologia. A idéia deu tão certo que a WECA decidiu por mudar o seu nome em 2003 para Wi-Fi Alliance, conforme já informado.

 

Funcionamento do Wi-Fi

Ao chegar neste ponto do texto, é natural que você esteja querendo saber como o Wi-Fi funciona. Como você já sabe, a tecnologia é baseada no padrão IEEE 802.11, no entanto, isso não quer dizer que todo produto que trabalhe com essas especificações seja também Wi-Fi. Para que um determinado produto receba um selo com essa marca, é necessário que ele seja avaliado e certificado pela Wi-Fi Alliance. Essa é uma forma de garantir ao usuário que todos os produtos com o selo Wi-Fi Certified seguem normas de funcionalidade que garantem a interoperabilidade entre si. Todavia, isso não significa que dispositivos que não ostentam o selo não funcionam com dispositivos que o tenham (mas, é preferível optar produtos certificados para diminuir o risco de problemas). Assim sendo e considerando que toda a base do Wi-Fi está no padrão 802.11, as próximas linhas darão explicações sobre este último como se ambos fossem uma coisa só (e, para fins práticos, são mesmo!).

O padrão 802.11 estabelece normas para a criação e para o uso de redes sem fio. A transmissão dessa rede é feita por sinais de radiofreqüência, que se propagam pelo ar e podem cobrir áreas na casa das centenas de metros. Como existem inúmeros serviços que podem utilizar sinais de rádio, é necessário que cada um opere de acordo com as exigências estabelecidas pelo governo de cada país. Essa é uma maneira de evitar problemas, especialmente interferências. Há, no entanto, alguns segmentos de freqüência que podem ser usados sem necessidade de aprovação direta de entidades apropriadas de cada governo: as faixas ISM (Industrial, Scientific and Medical), que podem operar, entre outros, com os seguintes intervalos: 902 MHz – 928 MHz; 2,4 GHz – 2,485 GHz e 5,15 GHz – 5,825 GHz (dependendo do país, esses limites podem sofrer variações). Como você verá a seguir, são justamente essas duas últimas faixas que o Wi-Fi utiliza, no entanto, tal característica pode variar conforme a versão do padrão 802.11.

Sendo assim, vamos conhecer as versões mais importantes do 802.11, mas antes, para facilitar a compreensão, é conveniente saber que, para uma rede desse tipo ser estabelecida, é necessário que os dispositivos (também chamados de STA – de “station”) se conectem a aparelhos que fornecem o acesso. Estes são genericamente denominados Access Point (AP). Quando um ou mais STAs se conectam a um AP, tem-se, portanto, uma rede, que é denominada Basic Service Set (BSS). Por questões de segurança e pela possibilidade de haver mais de um BBS em um determinado local (por exemplo, duas redes sem fio criadas por empresas diferentes em uma área de eventos), é importante que cada um receba uma identificação denominada Service Set Identifier (SSID), um conjunto de caracteres que, após definido, é inserido no cabeçalho de cada pacote de dados da rede. Em outras palavras, o SSID nada mais é do que o nome dado a cada rede sem fio.

STAs e AP Wi-Fi
Estações (STAs) e access point (AP) Wi-Fi

802.11 (original)

A primeira versão do padrão 802.11 foi lançada em 1997, após 7 anos de estudos, aproximadamente. Com o surgimento de novas versões (que serão abordadas mais adiante), a versão original passou a ser conhecida como 802.11-1997 ou, ainda, como 802.11 legacy (neste texto, será chamada de “802.11 original”). Por se tratar de uma tecnologia de transmissão por radiofreqüência, o IEEE (Institute of Electrical and Electronic Engineers) determinou que o padrão operasse no intervalo de freqüências entre 2,4 GHz e 2,4835 GHz, uma das já citadas faixas ISM. Sua taxa de transmissão de dados é de 1 Mbps ou 2 Mbps e é possível usar as técnicas de transmissão Direct Sequence Spread Spectrum (DSSS) e Frequency Hopping Spread Spectrum (FHSS). Ambas as técnicas permitem transmissões utilizando vários canais dentro de uma freqüência, no entanto, a DSSS cria vários segmentos da informações transmitidas e as envia simultaneamente aos canais. A técnica FHSS, por sua vez, utiliza um esquema de salto de freqüência, onde a informação transmitida utiliza um determinada freqüência em um certo período e, no outro, utiliza outra freqüência. Essa característica faz com que o FHSS tenha velocidade de transmissão de dados um pouco menor, por outro lado, torna a transmissão menos suscetível à interferências, uma vez que a freqüência utilizada muda constantemente. O DSSS acaba sendo mais rápido, mas tem maiores chances de sofrer interferência, uma vez que faz uso de todos os canais ao mesmo tempo.

802.11b

Em 1999, foi lançado uma atualização do padrão 802.11 que recebeu o nome 802.11b. A principal característica dessa versão é a possibilidade de estabelecer conexões nas seguintes velocidades de transmissão: 1 Mbps, 2 Mbps, 5,5 Mbps e 11 Mbps. O intervalo de freqüências é o mesmo utilizado pelo 802.11 original (entre 2,4 GHz e 2,4835 GHz), mas a técnica de transmissão se limita ao DSSS, uma vez que o FHSS acaba não atendendo às normas estabelecidas pela Federal Communications Commission (FCC) quando opera em transmissões com taxas superiores a 2 Mbps. Para trabalhar de maneira efetiva com as velocidades de 5.5 Mbps e 11 Mbps, o 802.11b também utiliza uma técnica chamada Complementary Code Keying (CCK).

A área de cobertura de uma transmissão 802.11b pode chegar, teoricamente, a 400 metros em ambientes abertos e pode atingir uma faixa de 50 metros em lugares fechados (tais como escritórios e residências). É importante frisar, no entanto, que o alcance da transmissão pode sofrer influência de uma série de fatores, tais como de objetos que causam interferência ou impedem a propagação da transmissão a partir do ponto em que está localizado.

É interessante notar que, para manter a transmissão o mais funcional possível, o padrão 802.11b (e os padrões sucessores) pode fazer com que a taxa de transmissão de dados diminua até chegar ao seu limite (1 Mbps) à medida em que uma estação fica mais longe do ponto de acesso. O contrário também existe: quanto mais perto do ponto de acesso, maior a velocidade de transmissão.

O padrão 802.11b foi o primeiro a ser adotado em larga escala, sendo, portanto, um dos responsáveis pela popularização das redes Wi-Fi.

802.11a

O padrão 802.11a foi disponibilizado no final do ano de 1999, quase que na mesma época que a versão 802.11b. Sua principal característica é a possibilidade de operar com taxas de transmissão de dados no seguintes valores: 6 Mbps, 9 Mbps, 12 Mbps, 18 Mbps, 24 Mbps, 36 Mbps, 48 Mbps e 54 Mbps. O alcance geográfico de sua transmissão é de cerca de 50 metros. No entanto, a sua freqüência de operação é diferente do padrão 802.11 original: 5 GHz. Por um lado, o uso dessa freqüência é conveniente por apresentar menos possibilidades de interferência, afinal, essa valor é pouco usado. Por outro, pode trazer determinados problemas, já que muitos países não possuem regulamento para essa freqüência. Além disso, essa característica pode fazer com que haja dificuldades de comunicação com dispositivos que operam nos padrões 802.11 original e 802.11b.

Um detalhe importante, é que ao invés de utilizar DSSS ou FHSS, o padrão 802.11a faz uso de uma técnica conhecida como Orthogonal Frequency Division Multiplexing (OFDM). Nela, a informação a ser transmitida é dividida em vários pequenos conjuntos de dados que são transmitidos simultaneamente em diferentes freqüências. Essas freqüências são utlizadas de uma forma que impede que uma interfira na outra, fazendo com que a técnica OFDM funcione de maneira bastante satisfatória.

Apesar de oferecer taxas de transmissão maiores, o padrão 802.11a não chegou a ser tão popular quanto o padrão 802.11b.

802.11g

O padrão 802.11g foi disponibilizado em 2003 e é tido como o sucessor natural da versão 802.11b, uma vez que é totalmente compatível com este. Isso significa que um dispositivo que opera com 802.11g pode “conversar” com outro que trabalha com 802.11b sem qualquer problema, exceto o fato de que a taxa de transmissão de dados é, naturalmente, limitava ao máximo suportado por este último.

O principal atrativo do padrão 802.11g é poder operar com taxas de transmissão de até 54 Mbps, assim como acontece com o padrão 802.11a. No entanto, ao contrário dessa versão, o 802.11g opera com freqüências na faixa de 2,4 GHz e possui praticamente o mesmo poder de cobertura do seu antecessor, o padrão 802.11b. A técnica de transmissão utilizada nessa versão também é o OFDM, todavia, quando é feita comunicação com um dispositivo 802.11b, a técnica de transmissão passa a ser o DSSS.
Roteador wireless da 3Com: suporte aos padrões 802.11b e 802.11g, e a conexões Ethernet

802.11n

No momento em que este artigo era disponibilizado no InfoWester, o padrão 802.11g era o mais utilizado para redes Wi-Fi, no entanto, já era possível encontrar vários equipamentos que trabalham também com o padrão 802.11n, cujo desenvolvimento se iniciou em 2004 (e não havia sido totalmente concluído até o fechamento deste artigo). Sim, esse é o padrão sucessor do 802.11g, tal como este foi do 802.11b.

O 802.11n tem como principal característica o uso de um esquema chamado Multiple-Input Multiple-Output (MIMO), capaz de aumentar consideravelmente as taxas de transferência de dados através da combinação de várias vias de transmissão. Assim sendo, é possível, por exemplo, usar dois, três ou quatro emissores e receptores para o funcionamento da rede. Uma das configurações mais comuns neste caso é o uso de APs que utilizam três antenas (três vias de transmissão) e STAs com a mesma quantidade de receptores. Somando essa característica de combinação com o aprimoramento de suas especificações, o padrão 802.11n é capaz de fazer transmissões na faixa de 300 Mbps e, teoricamente, pode atingir taxas de até 600 Mbps.

Em relação à sua freqüência, o padrão 802.11n pode trabalhar com as faixas de 2,4 GHz e 5 GHz, o que o torna compatível com os padrões anteriores, inclusive com o 802.11a (pelo menos, teoricamente). Sua técnica de transmissão padrão é o OFDM, mas com determinadas alterações, devido ao uso do esquema MIMO, sendo, por isso, muitas vezes chamado de MIMO-OFDM. Alguns estudos apontam que sua área de cobertura pode passar de 400 metros.

Outros padrões 802.11

O padrão IEEE 802.11 teve (e terá) outras versões além das mencionadas anteriormente, que não se tornaram populares por diversos motivos. Um deles é o padrão 802.11d, que é aplicado apenas em alguns países onde, por algum motivo, não é possível utilizar alguns dos outros padrões estabelecidos. Outro exemplo é o padrão 802.11e, cujo foco principal é o QoS (Quality of Service) das transmissões, isto é, a qualidade do serviço. Isso torna esse padrão interessante para aplicações que são severamente prejudicadas por ruídos (interferências), tais como as comunicações por VoIP.

Há também o padrão 802.11f, que trabalha com um esquema conhecido como handoff. Em poucas palavras, esse esquema faz com que um determinado dispositivo se desconecte de um AP (lembrando, um Access Point – ponto de acesso) de sinal fraco e se conecte em outro, de sinal mais forte, dentro da mesma rede. O problema é que alguns fatores podem fazer com que esse procedimento não ocorra da maneira devida, causando transtornos ao usuário. As especificações 802.11f (também conhecido como Inter-Access Point Protocol) fazem com que haja melhor interoperabilidade entre os APs para diminuir esses problemas.

Também merece destaque o padrão 802.11h. Na verdade, este nada mais é do que uma versão do 802.11a que conta com recursos de alteração de freqüência e controle do sinal devido ao fato da freqüência de 5 GHz (usada pelo 802.11a) ser aplicada em diversos sistemas na Europa. Há ainda o 802.11i, que será explicado no tópico a seguir (você verá o porquê).

Há vários outras especificações, mas a não ser por motivos específicos, é conveniente trabalhar com as versões mais populares, preferencialmente com a mais recente.

 

Segurança: WEP, WPA e WPA2

Se você tem uma rede Ethernet com dez pontos de acesso onde todos estão em uso, não será possível adicionar outro computador, a não ser que mais um cabo seja disponibilizado. Nas redes Wi-Fi, isso já não acontece, pois basta a qualquer dispositivo ter compatibilidade com a tecnologia para se conectar à rede. Mas, e se uma pessoa não autorizada conectar um computador à rede de maneira oculta para aproveitar todos os seus recursos, inclusive o acesso à internet? É para evitar que esses e outros problemas que as redes sem fio devem contar com esquemas de segurança. Um deles é o Wired Equivalent Privacy (WEP).

O WEP existe desde o padrão 802.11 original e consiste em um mecanismo de autenticação que funciona, basicamente, de forma aberta ou restrita por uso de chaves. Na forma aberta, a rede aceita qualquer dispositivo que solicite conexão, portanto, há apenas uma autorização. Na forma restrita, é necessário que cada dispositivo solicitante forneça uma chave (combinação de caracteres, como uma senha) pré-estabelecida. Essa mesma chave é utilizada para cifrar os dados trafegados pela rede. O WEP pode trabalhar com chaves de 64 bits e de 128 bits. Naturalmente, esta última é mais segura. Há alguns equipamentos que permitem chaves de 256 bits, mas isso se deve a alterações implementadas por determinados fabricantes, portanto, o seu uso pode gerar incompatibilidade com dispositivos de outras marcas.

O uso do WEP, no entanto, não é recomendado por causa de suas potenciais falhas de segurança (embora seja melhor utilizá-lo do que deixar a rede sem proteção alguma). Acontece que o WEP utiliza vetores de inicialização que, com uso de algumas técnicas, fazem com que a chave seja facilmente quebrada. Uma rede utilizando WEP de 64 bits, por exemplo, tem 24 bits como vetor de inicialização. Os 40 bits restantes formam uma chave muito fácil de ser quebrada. Mesmo com o uso de uma combinação de 128 bits, é relativamente fácil quebrar todo o esquema de segurança.

Diante desse problema, a Wi-Fi Alliance aprovou e disponibilizou em 2003 outra solução: o Wired Protected Access (WPA). Tal como o WEP, o WPA também se baseia na autenticação e cifragem dos dados da rede, mas o faz de maneira muito mais segura e confiável. Sua base está em um protocolo chamado Temporal Key Integrity Protocol (TKIP), que ficou conhecido também como WEP2. Nele, uma chave de 128 bits é utilizada pelos dispositivos da rede e combinada com o MAC Address (um código hexadecimal existente em cada dispositivo de rede) de cada estação. Como cada MAC Address é diferente do outro, acaba-se tendo uma seqüência específica para cada dispositivo. A chave é trocada periodicamente (ao contrário do WEP, que é fixo), e a seqüência definida na configuração da rede (o passphrase, que pode ser entendido como uma espécie de senha) é usada, basicamente, para o estabelecimento da conexão. Assim sendo, é expressamente recomendável usar WPA, ao invés de WEP.
Configuração a encriptação em um roteador wireless 3Com – Note que é possível escolher o tempo de renovação da chave no modo WPA

Apesar do WPA ser bem mais seguro que o WEP, a intenção da Wi-Fi Alliance foi a de trabalhar com um esquema de segurança ainda mais confiável. É aí que surge o 802.11i, que ao invés de ser um padrão de redes sem fio, é um conjunto de especificações de segurança, sendo também conhecido como WPA2. Este utilizada um protocolo denominado Advanced Encryption Standard (AES), que é bastante seguro e eficiente, mas tem a desvantagem de exigir bastante processamento. Seu uso é recomendável para quem deseja alto grau de segurança, mas pode prejudicar o desempenho de equipamentos de redes não tão sofisticados (geralmente utilizados no ambiente doméstico). É necessário considerar também que equipamentos mais antigos podem não ser compatíveis com o WPA2, portanto, sua utilização deve ser testada antes da implementação definitiva.

 

Alguns equipamentos Wi-Fi

As redes Wi-Fi são tão práticas, que o seu uso não precisa ser feito apenas por PCs. Há até smartphones e consoles de videogames capazes de acessar tais redes. Se você comprar um notebook atual, certamente ele virá com um módulo Wi-Fi. Assim, você poderá acessar as redes sem fio da sua empresa, da sua escola, de sua casa ou de qualquer outro lugar de acesso público. Mas, e se você precisar que um computador desktop sem dispositivo Wi-Fi acesse uma determinada rede wireless? Para isso, basta instalar nele uma placa Wi-Fi ou um adaptador USB Wi-Fi.

Uma placa Wi-Fi deve ser instalada na placa-mãe do computador. As placas mais comuns utilizam slots PCI ou, ainda, PCI Express. Após a instalação, é necessário ligar o computador e instalar os drivers do dispositivo, caso o sistema operacional não os tenha. Também há placas próprias para o uso em laptops (através de uma interface PC Card, por exemplo).
Placa Wi-Fi PCI posteriormente conectada em um PC

Por sua vez, os adaptadores USB Wi-Fi utilizam, como o próprio nome indica, qualquer porta USB presente no computador. A vantagem desse tipo de dispositivo está no fato de não ser necessário abrir o computador para instalá-lo e de poder removê-lo facilmente de uma máquina para acoplá-lo em outra. No entanto, como adaptadores USB geralmente são pequenos, sua antena é de tamanho reduzido, o que pode fazer com que o alcance seja menor que o de uma placa Wi-Fi PCI ou PCI Express. Mas, isso não é regra, e tal condição pode depender do fabricante e do modelo do dispositivo.

Se o que você precisa, no entanto, é de equipamentos para constituir um rede Wi-Fi (APs), saiba que há uma infinidade de dispositivos próprios para isso no mercado. Nos ambientes domésticos e nos escritórios de porte pequeno, por exemplo, é comum encontrar dois tipos de aparelhos: os que são chamados simplesmente de access point e os roteadores wireless. Ambos são dispositivos parecidos, mas o access point apenas propaga dados de uma rede wireless, sendo muitas vezes usado como uma extensão de uma rede baseada em fios. O roteador wireless, por sua vez, é capaz de direcionar o tráfego da internet, isto é, de distribuir os dados da rede mundial de computadores entre todas as estações. Para que isso seja feito, geralmente liga-se o dispositivo de recepção da internet (por exemplo, um modem ADSL) no roteador, e este faz a função de distribuir o acesso às estações. Se, no entanto, o usuário possui um modem que também faz roteamento, precisa apenas de um access point, pois o próprio modem se encarregará do compartilhamento do acesso à internet.

Antes de comprar o seu equipamento wireless, seja para montar uma rede, seja para fazer com que um dispositivo acesse uma, é importante conhecer as características de cada aparelho para fazer a aquisição certa. Por exemplo, pode ser um desperdício comprar uma placa Wi-Fi 802.11n e um access point 802.11g. Não é melhor comprar um placa 802.11g ou logo um roteador 802.11n?

Via de regra, deve-se optar pelos equipamentos que possuem tecnologias mais recentes, mas também deve-se considerar a relação custo-benefício e os recursos oferecidos por cada dispositivo. Por exemplo, é relativamente comum encontrar aparelhos 802.11g que alcançam taxas de até 108 Mbps, sendo que o limite do referido padrão é 54 Mbps. Qual o truque? Simplesmente o fabricante utilizou macetes que aumentam a taxa de transferência, mas se determinados dispositivos da rede não contarem com a mesma funcionalidade, de nada adianta a velocidade adicional.

 

Dicas de segurança

Ao chegar a este ponto do artigo, você certamente já conhece as vantagens de se ter uma rede Wi-Fi e, de igual forma, sabe que entre as suas desvantagens estão alguns problemas de segurança. No entanto, medidas preventivas podem fazer com que você nunca enfrente transtornos desse tipo. Eis algumas dicas importantes:

– habilite a encriptação de sua rede, preferencialmente com WPA ou, se possível, com WPA2. Em ambientes com muitas estações, pode-se utilizar WPA ou WPA2 com um servidor de autenticação RADIUS (Remote Authentication Dial In User Service), um esquema conhecido como WPA-RADIUS;

– ao habilitar o WPA ou o WPA2, use uma passphrase – isto é, uma seqüência que servirá como uma espécie de senha – com pelo menos 20 caracteres. Note que em sua rede Wi-Fi esses itens podem estar com os nomes WPA Pre-Shared Key e WPA2 Pre-Shared Key ou WPA-PSK e WPA2-PSK;

– altere o SSID, isto é, o nome da rede, para uma denominação de sua preferência. Se mantiver o nome estabelecido de fábrica, um invasor pode ter a impressão de que o dono da rede não se preocupa com os aspectos de segurança;

– também é importante desativar o broadcast do SSID (um recurso que faz com uma determinada estação detecte a rede pelo seu nome automaticamente), pois isso impede que dispositivos externos enxerguem a rede e tentem utilizá-la (embora existam técnicas avançadas que conseguem enxergar redes ocultas). É importante frisar, no entanto, que ao fazer isso, você deverá informar o SSID manualmente, se quiser adicionar uma estação à rede. Há um campo apropriado para isso no aplicativo que faz a conexão;

– mude a senha padrão do roteador ou do access point. Muitos invasores conhecem as senhas aplicadas pelos fabricantes e, podem, portanto, acessar as propriedades de uma rede cuja senha não foi alterada;

– sempre que possível, habilite as opções de firewall;

– diminua a intensidade do sinal, caso sua rede tenha a finalidade de servir uma área pequena. Para isso, alguns aparelhos permitem regular a emissão do sinal ou desativar uma antena extra;

– por fim, leia o manual do aparelho e siga todas as orientações de segurança recomendadas pelo fabricante.

 

Essas e outras configurações são feitas através de uma interface em HTML fornecida pelo roteador ou por um dispositivo equivalente. Como exemplo, o roteador 3Com apresentado em uma foto acima, tem a sua interface acessada no endereço IP 168.192.1.1 (este é um IP local, não válido na internet). Ao digitar esse endereço no navegador de internet, o roteador mostrará uma página em HTML com campos de login (obviamente, o dispositivo já tem que estar em funcionamento para isso). Quando o login é efetuado, o usuário pode então acessar e alterar as configurações do aparelho.
Interface em HTML do roteador Wireless – Nesta página, é possível, entre outras coisas, configurar o SSID

 

Por essa razão, é essencial consultar o manual do seu equipamento Wi-Fi para saber como aplicar as dicas mencionadas neste tópico e realizar outras alterações. No manual, o fabricante fornece todas as orientações necessárias para alterar configurações e informa também o endereço IP da interface do aparelho.

 

Finalizando

Este artigo fez uma apresentação básica das principais características que envolvem o Wi-Fi. Suas explicações podem ajudar a quem deseja entender um pouco mais do funcionamento das redes sem fio que se baseiam nessa tecnologia e pode servir de introdução para quem quer se aprofundar mais no assunto. Neste último caso, talvez seja interessante consultar também os sites que serviram de referência para este texto:

Publicado em 1. Leave a Comment »

Processadores

Mudamos para http://infoachei.com.br/
Obrigado pela visita!

Moved to http://infoachei.com.br/
Thanks for visits!

Introdução

Os processadores (ou CPUs, de Central Processing Unit) são chips responsáveis pela execução de cálculos, decisões lógicas e instruções que resultam em todas as tarefas que um computador pode fazer e, por esse motivo, são também referenciados como “cérebros” dessas máquinas. Embora haja poucos fabricantes (essencialmente, Intel, AMD e VIA), o mercado conta com uma grande variedade de processadores. Apesar disso e das diferenças existentes entre cada modelo, todos compartilham de alguns conceitos e características. Com base nisso, o InfoWester apresenta este artigo de introdução aos processadores, onde você conhecerá a função e o significado de clock, bits internos, memória cache e chips com dois ou mais núcleos.

O barramento de endereços, basicamente, indica de onde os dados a serem processados devem ser retirados ou para onde devem ser enviados. A comunicação por esse barramento é unidirecional, razão pela qual só há seta em uma das extremidades da linha no gráfico que representa a sua comunicação. Como o nome deixa claro, é pelo barramento de dados que os dados transitam. Por sua vez, o barramento de controle faz a sincronização das referidas atividades, habilitando ou desabilitando o fluxo de dados, por exemplo.

Para você compreender melhor, imagine que o processador necessita de um dado presente na memória. Pelo barramento de endereços, ele obtém a localização desse dado dentro da memória. Como precisa apenas acessar o dado, o processador indica pelo barramento de controle que esta é uma operação de leitura na memória. O dado é então localizado e inserido no barramento de dados, por onde o processador, finalmente, o lê.

 

Clock interno e clock externo

Em um computador, todas as atividades necessitam de sincronização. O clock serve justamente para isso, ou seja, basicamente, atua como de sinal de sincronização. Quando os dispositivos do computador recebem o sinal de executar suas atividades, dá-se a esse acontecimento o nome de “pulso de clock”. Em cada pulso, os dispositivos executam suas tarefas, param e vão para o próximo ciclo de clock.

A medição do clock é feita em hertz (Hz), a unidade padrão de medidas de freqüência, que indica o número de oscilações ou ciclos que ocorre dentro de uma determinada medida de tempo, no caso, segundos. Assim, se um processador trabalha à 800 Hz, por exemplo, significa que é capaz de lidar com 800 operações de ciclos de clock por segundo. Repare que, para fins práticos, a palavra kilohertz (KHz) é utilizada para indicar 1000 Hz, assim como o termo megahertz (MHz) é usado para indicar 1000 KHz (ou 1 milhão de hertz). De igual forma, gigahertz (GHz) é a denominação usada quando se tem 1000 MHz, e assim por diante. Com isso, se um processador tem, por exemplo, uma freqüência de 800 MHz, significa que pode trabalhar com 800 milhões de ciclos por segundo.

As freqüências com as quais os processadores trabalham são chamadas também de clock interno. Neste ponto, você certamente já deve ter entendido que é daí que vem expressões como Pentium 4 de 3,2 GHz, por exemplo. Mas, os processadores também contam com o que chamamos de clock externo ou Front Side Bus (FSB) ou, ainda, barramento frontal.

O FSB existe porque, devido a limitações físicas, os processadores não podem se comunicar com a memória (mais precisamente, como a ponte norte – ou northbridge – do chipset, que contém o controlador da memória) usando a mesma velocidade do clock interno. Assim, quando essa comunicação é feita, o clock externo, de freqüência mais baixa, é que é usado. Note que, para obter o clock interno, o processador usa uma multiplicação do clock externo. Para entender melhor, suponha que um determinado processador tenha clock externo de 100 MHz. Como o seu fabricante indica que esse chip trabalha à 1,6 GHz (ou seja, tem clock interno de 1,6 GHz), seu clock externo é multiplicado por 16: 100 x 16 = 1600 MHz ou 1,6 GHz.

É importante deixar claro, no entanto, que se dois processadores diferentes – um da Intel e outro da AMD, por exemplo – tiverem clock interno de mesmo valor – 2,8 GHz, para exemplificar -, não significa que ambos trabalham à mesma velocidade. Cada processador tem um projeto distinto e conta com características que determinam o quão rápido é. Assim, um determinado processador pode levar, por exemplo, 2 ciclos de clock para executar uma instrução. Em outro processador, essa mesma instrução pode requerer 3 ciclos. Além disso, muitos processadores – especialmente os mais recentes – transferem 2 ou mais dados por ciclo de clock, dando a entender que um processador que faz, por exemplo, transferência de 2 dados por ciclo e que trabalha com clock externo de 133 MHz, o faz à 266 MHz. Por esses e outros motivos, é um erro considerar apenas o clock interno como parâmetro de comparação entre processadores diferentes.

 

Bits dos processadores

O número de bits é outra importante característica dos processadores e, naturalmente, tem grande influência no desempenho desse dispositivo. Processadores mais antigos, como o 286, trabalhavam com 16 bits. Durante muito, no entanto, processadores que trabalham com 32 bits foram muitos comuns, como as linhas Pentium, Pentium II, Pentium III e Pentium 4 da Intel, ou Athlon XP e Duron da AMD. Alguns modelos de 32 bits ainda são encontrados no mercado, todavia, o padrão atual são os processadores de 64 bits, como os da linha Core 2 Duo, da Intel, ou Athlon 64, da AMD.

Em resumo, quanto mais bits internos o processador trabalhar, mais rapidamente ele poderá fazer cálculos e processar dados em geral, depedendo da execução a ser feita. Isso acontece porque os bits dos processadores representam a quantidade de dados que os circuitos desses dispositivos conseguem trabalhar por vez. Um processador com 16 bits, por exemplo, pode manipular um número de valor até 65.535. Se esse processador tiver que realizar uma operação com um número de 100.000, terá que fazer a operação em duas partes. No entanto, se um chip trabalha a 32 bits, ele pode manipular números de valor até 4.294.967.295 em uma única operação. Como esse valor é superior a 100.000, a operação será possível em uma única vez.

Em relação aos processadores de 64 bits, saiba mais sobre eles neste artigo.

 

Memória cache

Os processadores passam por aperfeiçoamentos constantes, o que os tornam cada vez mais rápidos e eficientes. No entanto, o mesmo não se pode dizer das tecnologias de memória RAM. Embora estas também passem por constantes melhorias, não conseguem acompanhar os processadores em termos de velocidade. Assim sendo, de nada adianta ter um processador rápido se este tem o seu desempenho comprometido por causa da “lentidão” da memória.

Uma solução para esse problema seria equipar os computadores com um tipo de memória muito mais rápida, a SRAM (Static RAM). Estas se diferenciam das memórias convencionais DRAM (Dynamic RAM) por serem muito rápidas, por outro lado, são muito mais caras e não contam com o mesmo nível de miniaturização, sendo, portanto, inviáveis. Apesar disso, a idéia não foi totalmente descartada, pois foi adaptada para o que conhecemos como memória cache.

A memória cache consiste em uma pequena quantidade de memória SRAM embutida no processador. Quando este precisa ler dados na memória RAM, um circuito especial chamado “controlador de cache” transfere blocos de dados muito utilizados da RAM para a memória cache. Assim, no próximo acesso do processador, este consultará a memória cache, que é bem mais rápida, permitindo o processamento de dados de maneira mais eficiente. Se o dado estiver no cache, o processador a utiliza, do contrário, irá buscá-lo na memória RAM, etapa essa que é mais lenta. Dessa forma, a memória cache atua como um intermediário, isto é, faz com que o processador nem sempre necessite chegar à memória RAM para acessar os dados dos quais necessita. O trabalho da memória cache é tão importante que, sem ela, o desempenho de um processador pode ser seriamente comprometido.

Os processadores trabalham, basicamente, com dois tipos de cache: cache L1 (Level 1 – Nível 1) e cache L2 (Level 2 – Nível 2). Este último é ligeiramente maior em termos de capacidade e passou a ser utilizado quando o cache L1 se mostrou insuficiente. Antigamente, um tipo distinguia do outro pelo fato da memória cache L1 estar localizada junto ao núcleo do processador, enquanto que a cache L2 ficava localizada na placa-mãe. Atualmente, ambos os tipos ficam localizados dentro do chip do processador, sendo que, em muitos casos, a cache L1 é dividida em duas partes: “L1 para dados” e “L1 para instruções”.

Vale ressaltar que, dependendo da arquitetura do processador, é possível o surgimento de modelos que tenham um terceiro nível de cache (L3). Mas, isso não é novidade: a AMD chegou a ter um processador em 1999 chamado K6-III que contava com cache L1 e L2 internamente, algo incomum à época, já que naquele tempo o cache L2 se localizava na placa-mãe. Com isso, esta última acabou assumindo o papel de cache L3.

A foto abaixo mostra um processador AMD Athlon, com 64 KB de cache L1 para instruções, 64 KB de cache L1 para dados e 512 KB de cache L2. Note que a capacidade de cada tipo de cache varia conforme o modelo do processador.

Processadores com dois ou mais núcleos

Há tempos que é possível encontrar no mercado placas-mãe que contam com dois ou mais slots para processadores. A maioria esmagadora dessas placas são usadas em computadores especiais, como servidores e workstations, que são utilizados em aplicações que exigem grandes recursos de processamento. Para aplicações domésticas e de escritório, no entanto, computadores com dois ou mais processadores são inviáveis devido aos elevados custos que esses equipamentos representam, razão pela qual é conveniente a esses nichos de mercado contar com processadores cada vez mais rápidos.

Até um passado não muito distante, o usuário tinha noção do quão rápido eram os processadores de acordo com a taxa de seu clock interno. O problema é que, quando um determinado valor de clock é alcançado, torna-se mais difícil desenvolver outro chip com clock maior. Limitações físicas e tecnológicas são os motivos para isso. Uma delas é a questão da temperatura: quanto mais megahertz um processador tiver, mais calor ele gerará.

Uma das formas encontradas pelos fabricantes para lidar com essa limitação é fabricar e disponibilizar processadores com dois núcleos (dual-core) ou mais (multi-core). Mas, o que isso significa? Processadores desse tipo contam com dois ou mais núcleos distintos no mesmo circuito integrado, como se houvesse dois processadores dentro de um. Dessa forma, o processador pode lidar com dois processos por vez, um para cada núcleo, melhorando o desempenho do computador como um todo. Note que, em um chip de único núcleo, o usuário pode ter a impressão de que vários processos são executados simultaneamente, já que a máquina está quase sempre executando mais de uma aplicação ao mesmo tempo. Na verdade, o que acontece é que o processador dedica determinados intervalos de tempo a cada processo e isso ocorre de maneira tão rápida, que se tem a impressão de processamento simultâneo.

Pelo menos teoricamente, é possível fabricar processadores com dezenas de núcleos. No momento em que este artigo era escrito no InfoWester, era possível encontrar processadores com 2, 3 e 4 núcleos (dual-core, triple-clore e quad-core, respectivamente). É importante ressaltar que ter processadores com dois ou mais núcleos não implica, necessariamente, em computadores que são proporcionalmente mais rápidos. Uma série de fatores influenciam nesse quesito, como as velocidades limitadas das memórias e dos dispositivos de entrada e saída, e as formas como os programas são desenvolvidos.

Na imagem abaixo, uma montagem que ilustra o interior de um processador Intel Core 2 Extreme Quad-Core (com 4 núcleos):

O trabalho de um processador

O processador é um chip de silício responsável pela execução das tarefas cabíveis a um computador. Para entender como um processador trabalha, é conveniente dividirmos um computador em três partes: processador, memória e um conjunto de dispositivos de entrada e saída (ou I/O, de Input/Output). Neste último, encontra-se qualquer item responsável pela entrada ou saída de dados no computador, como monitores de vídeo, teclados, mouses, impressoras, scanners, discos rígidos, etc. Nesse esquema, obviamente, o processador exerce a função principal, já que a ele cabe o acesso e a utilização da memória e dos dispositivos de entrada e saída para a execução de suas atividades.

Para entender melhor, suponha que você queira que o seu computador execute um programa qualquer. Um programa consiste em uma série de instruções que o processador deverá executar para que a tarefa solicitada seja realizada. Para isso, o processador transfere todos os dados necessários à execução, de um dispositivo de entrada e/ou saída – como um disco rígido – para a memória. A partir daí, todo o trabalho é realizado e o que vai ser feito do resultado depende do programa. O processador pode ser orientado a enviar as informações processadas para o HD novamente ou para uma impressora, por exemplo, tudo depende das instruções com as quais lidar.

Barramentos

A imagem a seguir ilustra a comunicação entre o processador, a memória e o conjunto de dispositivos de entrada e saída. Note que a conexão entre esses itens é indicada por setas. Isso é feito para que você possa entender a função dos barramentos. De maneira geral, estes são os responsáveis pela interligação e comunicação dos dispositivos em um computador. Note que, para o processador se comunicar com a memória e com o conjunto de dispositivos de entrada e saída, há 3 setas, isto é, barramentos: um se chama barramento de endereços (address bus); outro, barramento de dados (data bus); o terceiro, barramento de controle (control bus).

Silício

O primeiro passo na fabricação de processadores consiste, obviamente, na obtenção de matéria-prima. Geralmente, os chips são formados por silício, e com os processadores não é diferente. O silício é um elemento químico extremamente abundante, tanto que é considerado o segundo mais comum na Terra. É possível extraí-lo de areia, granito, argila, entre outros.

Esse elemento químico é utilizado para a constituição de vários materiais resistentes, como vidro e cerâmica. No entanto, é também semicondutor, isto é, tem a capacidade de conduzir eletricidade. Essa característica somada à sua existência em abundância faz com que o silício seja um elemento extremamente utilizado pela indústria eletrônica.

Para você ter uma ideia da importância desse material, a concentração de empresas que utilizam silício em seus produtos eletrônicos em várias cidades da Califórnia, nos EUA, fez com que a região recebesse o nome de Vale do Silício (Silicon Valley). É lá que estão localizadas, por exemplo, as sedes da AMD e da Intel, as maiores fabricantes de microprocessadores do mundo.

 

Fabricação de processadores

A fabricação dos processadores se inicia em modernos centros tecnológicos especializados. Esses locais são tão sofisticados e de construção de valor tão elevado, que existem poucos no mundo. Nos laboratórios desses centros, uma determinada quantidade de cristal de silício é colocada em uma espécie de haste e, posteriormente, inserida em silício fundido submetido a uma pressão e a uma temperatura extremamente alta – em torno dos 300º. A haste é então retirada e girada ao mesmo tempo. Esse processo (chamado de técnica Czochralski) faz com que o material que se juntou à haste forme uma espécie de cilindro (também conhecido como “ingot“). Seu diâmetro varia de acordo com o avanço da tecnologia, mas em geral possui entre 200 e 300 milímetros. O mesmo vale para o seu comprimento: de 1 a 2 metros. É importante frisar que esses cilindros precisam ser formados de silício puro. O processo de purificação desse material é complexo, o que encarece ainda mais a fabricação.

Uma vez concluída essa etapa, o cilindro é “fatiado”, isto é, cortado em várias partes. Cada uma dessas divisões recebe o nome de wafer. Cada “fatia” é polida até ficar perfeita, sem variações, manchas, diferenças de brilho ou qualquer irregularidade em sua composição. Sua espessura, geralmente é menor que 1 milímetro. Em uma etapa mais adiante, cada wafer será dividido em vários “quadradinhos” (ou “pastilhas”), que posteriormente serão separados e formarão os processadores em si.

No passo seguinte, a superfície do wafer passa por um processo de oxidação, onde a aplicação de gases – especialmente oxigênio – e temperatura elevada forma uma camada de dióxido de silício. Essa camada servirá de base para a construção de milhares e milhares de transistores, em poucas palavras, minúsculos componentes capazes de “amplificar” ou “chavear” sinais elétricos, além de outras funções relacionadas.

Na próxima etapa, os wafers passam por um processo onde recebem uma camada de material fotossensível, isto é, que reage à luz. Nessa etapa, cada um dos blocos que se transformará em processador recebe luz ultravioleta em certos pontos e em determinadas intensidades. Os pontos da camada fotossensível que reagem à luz ultravioleta se tornam mais “gelatinosos” e são posteriormente removidos, deixando expostos os respectivos pontos da camada de dióxido de silício. Com isso, tem-se pontos cobertos com camada fotossensível e pontos cobertos com dióxido de silício. Obviamente, a camada fotossensível restante tem dióxido de silício por baixo. As partes deste último que não estiverem protegidas pela camada fotossensível são então removidas através de outro procedimento. No próximo passo, a camada fotossensível é removida. O que sobra então é utilizado como estrutura para a montagem dos transistores, procedimento esse que continua sendo feito a partir de aplicação de mais materiais e exposição à luz ultravioleta.

Quem tem alguma experiência com fotos baseadas em filmes, provavelmente perceberá que as etapas descritas acima lembram bastante os procedimentos de revelação de fotografias. De fato, os princípios são essencialmente os mesmos.

É importante frisar que um único processador pode conter milhões de transistores. Só como exemplo, os primeiros processadores da linha Intel Core 2 Duo possuem cerca de 291 milhões de transistores em um único chip. Assim como acontece com qualquer processador, esses transistores são divididos e organizados em agrupamentos, onde cada grupo é responsável por uma função.

Uma vez terminada a montagem dos transistores, os wafers são “recortados” em um formato que lembra pequenos quadrados ou pastilhas. Cada unidade se transformará em um processador. Como os wafers são redondos, o que sobra da borda, obviamente, não pode virar um processador, então esse material é descartado, assim como qualquer unidade que apresentar defeito ou anormalidade.

Você pode ter se perguntado se não seria ideal fabricar wafers quadrados ou retangulares para evitar desperdício na borda. Teoricamente, seria, mas os wafers são formados por cilindros devido à técnica de fabricação explicada no início deste tópico, onde uma haste é inserida em silício e, em seguida, retirada e girada. Esse procedimento faz com que um cilindro seja constituído naturalmente.

É importante frisar que cada wafer dá origem a centenas de processadores, portanto, todo o processo de fabricação é realizado com base em uma série de cuidados. Para começar, os laboratórios das fábricas são locais extremamente limpos e protegidos (conhecidos como “clean room“), tanto é que as poucas pessoas que acompanham a produção utilizam roupas que lembram astronautas (como mostra a segunda foto deste tópico). Além disso, as máquinas responsáveis pela produção precisam estar perfeitamente ajustadas para seguir as instruções dos projetos dos chips que estão sendo fabricados.

Diferença de clock

Quando os processadores chegam ao mercado, eles são classificados em linhas, por exemplo, Intel Core 2 Duo, AMD Phenom II e assim por diante. Cada uma dessas linhas é constituída por processadores de diversas velocidades de processamento. Como exemplo, a linha Intel Core 2 Duo possui os modelos E8400, E8500 e E8600. O que os diferencia é que o clock do primeiro é de 3 GHz, o clock do segundo é de 3,16 GHz e, por fim, o clock do terceiro é de 3,33 GHz.

Todos esses processadores são oriundos do mesmo projeto, portanto, têm a mesma arquitetura. O que torna um modelo mais rápido que o outro é que a fabricação do mais veloz foi mais perfeita que a dos modelos imediatamente inferiores. Pequenos detalhes durante todo o processo de fabricação fazem com que, dentro de um mesmo wafer, as “pastilhas” sejam ligeiramente diferentes uma das outras. Isso pode acontecer, por exemplo, em virtude de pequenos desvios nas camadas, em pequenas diferenças na passagem do feixe de luz, entre outros.

Por esse motivo, os wafers passam por testes que apontam com qual frequência cada chip pode utilizar. Apenas depois disso é que o wafer é cortado e os chips passam para a fase de encapsulamento. Esses testes também apontam quais chips deverão ser descartados por não terem condições de uso.

 

Miniaturalização

A indústria conseguiu elevar a capacidade dos processadores ao longo do tempo sem que, para tanto, tivesse que aumentar o tamanho físico desses dispositivos. Esse feito é possível graças à nanotecnologia, em poucas palavras, um ramo da ciência que envolve as pesquisas que lidam com itens medidos na casa dos nanômetros. Para quem não sabe, um nanômetro equivale a um milionésimo de milímetro, isto é, um milímetro dividido por um milhão, e sua sigla é nm. A medida mais usada, no entanto, é o micron, que equivale a um milésimo de milímetro, ou seja, um milímetro dividido por mil.

Graças às pesquisas de nanotecnologia, é possível deixar os transistores dos chips cada vez menores. O processador Intel 486, por exemplo, tem cerca de 1 milhão de transistores, sendo que cada um deles conta com praticamente 1 micron de tamanho. Muito pequeno, não? Na verdade, é um tamanho monstruoso, se comparado aos processadores atuais. Só para você ter uma ideia, neste artigo já foi dito que os primeiros processadores da linha Intel Core 2 Duo contam com cerca de 291 milhões de transistores. Esses chips utilizam tecnologia de fabricação de 0,065 micron (ou 65 nanômetros), sendo que os mais recentes dessa linha são fabricados com 0,045 micron (45 nanômetros).

As pesquisas sobre miniaturalização de chips indicam que será possível levar esse processo até a casa dos 25 nanômetros (ou um valor não muito menor que isso). Depois disso, a indústria chegará a um limite físico onde os transistores provavelmente serão formados por poucos átomos e não poderão mais ser diminuídos. É claro que pesquisas já estão em andamento para criar uma saída para esse problema. Uma delas é a “computação quântica” , que muito mais que contornar os limites físicos dos processadores da “computação clássica”, poderá revolucionar a computação como um todo.

 

Encapsulamento dos processadores

Nas etapas de encapsulamento, o processador é inserido em uma espécie de “carcaça” que o protege e contém contatos metálicos para a sua comunicação com os componentes do computador. Cada modelo de processador pode contar com tipos de encapsulamento diferentes, que variam conforme o seu projeto. Em geral, os processadores possuem em sua parte superior uma espécie de “tampa” metálica chamada “Integrated Heat Spreader” (IHS), que serve para protegê-lo e, muitas vezes, para facilitar a dissipação de calor. Esse componente normalmente cobre toda a parte superior do chip e, dentro dele, no centro, fica o processador em si (também chamado de “die“). No entanto, em alguns modelos, o IHS não é utilizado. Nesses casos, a ausência dessa proteção pode facilitar a dispersão de calor devido ao contato direto do die com o cooler (ventoinha) do processador e reduzir custos de fabricação.

É importante frisar que há várias tecnologias usadas no encapsulamento dos processadores. A aplicação de cada uma varia conforme o projeto do chip. Eis os tipos principais, tendo como base tecnologias da Intel:

– PGA: sigla de Pin Grid Array (algo como “matriz de pinos”), esse é um tipo de encapsulamento que faz com que o processador utilize pinos de contato que devem ser inseridos em um encaixe adequado na placa-mãe do computador (ver soquete, logo abaixo). Seu material básico pode ser cerâmica (Ceramic Pin Grid Array – CPGA) ou plástico (Plastic Pin Grid Array – PPGA). Há também um tipo chamado Flip Chip Pin Grid Array (FC-PGA) onde a pastilha fica parcialmente exposto na parte superior do chip;

– SECC: sigla para Single Edge Contact Cartridge, este tipo faz com que o processador utilize um encaixe linear (ligeiramente semelhante aos slots de memória, por exemplo) ao invés de contatos em formato de pinos. Para isso, o processador é montado dentro de uma espécie de cartucho;

SEPP: sigla para Single Edge Processor Package, este tipo é semelhante ao SECC, no entanto, o processador fica acoplado em um placa que não é protegida por um cartucho;

– LGA: sigla para Land Grid Array, esse é um padrão recente da Intel. Tem alguma semelhança com os padrões PGA, tendo como principal diferença o fato de que os processadores não utilizam pinos de contato em sua parte inferior, mas sim pontos metálicos. Quando o processador é encaixado na placa-mãe, esses pontos ficam em contato com pinos existentes no soquete (lembrando que nos padrões PGA há furos ao invés de pinos no soquete). No que se refere ao LGA, a Intel utilizava (até o fechamento deste texto no InfoWester) um tipo chamado FC-LGA4 (Flip Chip Land Grid Array, onde o número 4 indica o número de revisão do padrão).

Na parte inferior dos processadores com encapsulamentos nos padrões PGA e semelhantes, ficam expostos uma série de contatos metálicos que fazem a comunicação entre o processador em si e os componentes do computador. Para isso, esse contatos são encaixados em uma área apropriada na placa-mãe da máquina, chamada de soquete (ou socket). Acontece que a quantidade e a disposição desses pinos varia conforme o modelo do processador. Por exemplo, a linha Intel Core 2 Duo e alguns dos modelos mais recentes da linha Pentium 4 utilizam o soquete 775 (LGA 775):

Isso deixa claro que é necessário utilizar placa-mãe e processador com o mesmo soquete no momento de montar um computador. Porém, é importante frisar que isso não é garantia de compatibilidade entre ambos. É possível, por exemplo, que uma determinada placa-mãe utilize o mesmo soquete de um processador lançado depois de sua chegada ao mercado. Apesar de ambos terem o mesmo soquete, uma incompatibilidade pode ocorrer, já que o chipset da placa-mãe pode não ter sido preparado para receber aquele processador. Por essa razão, é importante checar sempre no site do fabricante ou no manual da placa-mãe quais processadores esta suporta.

Note que a disposição de pinos (ou pontos de contato, no caso de chips com encapsulamento do tipo LGA) é feita de forma que o usuário tenha apenas uma forma de encaixar o processador na placa-mãe. Com isso, impede-se inserções erradas que possam resultar em danos ao computador. Por essa razão, se o usuário não estiver conseguindo encaixar o processador, deve evitar esforços e procurar no manual da placa-mãe a orientação correta.

 

Nomes-código dos núcleos

Todo processador chega ao mercado tendo um nome que permita facilmente identificá-lo, como Pentium 4, Core 2 Duo, Itanium, Athlon 64, Phenom, etc. O que pouca gente sabe é que o núcleo dos processadores recebe outra denominação antes mesmo de seu lançamento oficial: o nome-código.

A utilização de nomes-código é importante porque permite distinguir as características de arquitetura de cada chip. Mesmo dentro de uma determinada linha é possível encontrar processadores com diferenças em seu projeto. Podemos utilizar como exemplo os primeiros modelos da linha Intel Core 2 Duo, que são baseados nos núcleos de nomes Conroe e Merom. O primeiro é direcionado a desktops, enquanto que o segundo é voltado a computadores portáteis (como notebooks). Sendo assim, o Merom possui recursos que otimizam seu desempenho para exigir menos energia (por exemplo, utiliza voltagem menor e FSB reduzido, se comparado ao Conroe).

Finalizando

Os processadores são dispositivos altamente complexos, mas igualmente fascinantes. Chega a ser difícil acreditar que um chip que cabe na ponta do dedo pode realizar tantas coisas. Infelizmente, não é possível encontrar muitos documentos e imagens que detalhem os locais e as etapas da fabricação dos processadores. E não é difícil entender o motivo: esses lugares são bastante protegidos e contam com uma política extremamente rigorosa de acesso, pois simples grãos de poeira ou até mesmo as luzes do flash das câmeras podem prejudicar a produção. Além disso, é notório que cada fabricante tenta se proteger de espionagem industrial.

Fonte:

http://www.infowester.com/processadores1.php

http://www.infowester.com/processadores2.php

Publicado em 1. Leave a Comment »